丢掉向量数据库!推理型 RAG 正在重新定义长文档问答的准确边界在大模型应用落地的浪潮中,RAG(检索增强生成)一度被视为解决知识幻觉、提升事实准确性的“银弹”。然而,当开发者真正将 RAG 投入企业级场景——比如解析一份 300 页的 SEC 财报、一份技术标准文档或一本法律汇编时,理想与现实之间的鸿沟便迅速显现。我们反复调整 chunk 大小、重叠窗口、嵌入模型版本,甚至尝试多层 rerank,但模型依然会在关键数据上“张冠李戴”,或在看似合理实则错误的语境中给出误导性答案。问题根源并不在于工程调优不足,而在于方法论本身:传统 RAG 将“语义相似”等同于“信息相