改进

一勺汤11 天前
人工智能·深度学习·yolo·目标检测·模块·改进·yolov11
YOLO11改进-模块-引入多尺度差异融合模块MDFM遥感变化检测(RSCD)专注于识别在不同时间获取的两幅遥感图像之间发生变化的区域。近年来,卷积神经网络(CNN)在具有挑战性的 RSCD 任务中展现出了良好的效果。然而,这些方法未能有效地融合双时相特征,也未提取出对后续 RSCD 任务有益的有用信息。此外,它们在特征聚合中没有考虑多层次特征交互,并且忽略了差异特征与双时相特征之间的关系,从而影响了 RSCD 的结果。为解决上述问题,本文通过孪生卷积网络提取不同层次的双时相特征,然后创建多尺度差异融合模块(MDFM)来融合双时相特征,并以多尺度方式提取包含
一勺汤2 个月前
深度学习·yolo·目标检测·视觉检测·模块·改进·yolov11
YOLOv11模型改进-注意力-引入简单无参数注意力模块SimAM 提升小目标和遮挡检测本篇文章将介绍一个新的改进机制——卷积和注意力融合模块SimAM ,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,SimAM 是一种用于卷积神经网络的简单且无参数的注意力模块,它基于神经科学理论定义能量函数来计算 3-D 注意力权重,能有效提升网络的表征能力,且具有轻量级、高效等优势。随后,我们将详细讨论他的模型结构,以及如何将SimAM 模块与YOLOv11相结合,以提升目标检测的性能。
XingshiXu1 年前
算法·yolo·剪枝·模块·轻量化·改进·注意力
【YOLOv 剪枝 轻量化】融合YOLOv5s与通道剪枝算法的奶牛轻量化个体识别方法(英文版含中文翻译)融合YOLOv5s与通道剪枝算法的奶牛轻量化个体识别方法 Light-weight recognition network for dairy cows based on the fusion of YOLOv5s and channel pruning algorithm