YOLO11改进-模块-引入星型运算Star Blocks

当前网络设计中,"星型运算"(逐元素乘法)的应用原理未被充分探究,潜力有待挖掘。为解决此问题,我们引入 Star Blocks,其内部由 DW - Conv、BN、ReLU 等模块经星型运算连接,各模块有特定参数。同时揭示星型运算可将输入映射到高维非线性特征空间且无需拓宽网络。最终 StarNet 在紧凑结构和高效预算下实现了高性能与低延迟,有效提升了网络性能。本文考虑到YOLO目标检测的C3k2模块在特征融合的时候,高维非线性特征缺失,本文将Star Blocks与C3K2相结合,提出 C3k2_StarsBlock模块。

左边是原模型,右边是改进模型

1. 星型运算Star Blocks结构介绍

1. 卷积层(Conv):模块中包含卷积层,用于提取特征。不同阶段(stage)的卷积层有不同的参数。例如,图中提到卷积层(Conv)的核大小(ks)为 3,步长(stride)为 2。

2. 深度可分离卷积(DW - Conv):模块中还包含深度可分离卷积层,用于进一步处理特征。深度可分离卷积层的核大小(ks)为 7,步长(stride)为 1。

3. 批量归一化(BN)和激活函数(ReLU):在模块中,深度可分离卷积层前后可能会有批量归一化和激活函数操作,用于归一化数据和引入非线性。

4. 星型运算(element - wise mul.,即星型乘法):这是 Star Blocks 模块的关键操作。星型运算将不同层的特征进行逐元素乘法,从而在不增加网络宽度的情况下,将输入映射到高维非线性特征空间。

2. YOLOv11与星型运算Star Blocks的结合

  1. YOLO目标检测的C3k2模块在特征融合的时候,存在高维非线性特征缺失,本文将Star Blocks与C3K2相结合,提出C3k2_StarsBlock模块。

3. 星型运算Star Blocks代码部分

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve

4. 将星型运算Star Blocks引入到YOLOv11中

第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

第二:在task.py中导入C3k2_StarsBlock包

第三:在task.py中的模型配置部分下面代码

​​​​​​

第四:将模型配置文件复制到YOLOV11.YAMY文件中

第五:运行成功

python 复制代码
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"D:\model\yolov11\ultralytics\cfg\models\11\yolo11_starnet.yaml")\
        .load(r'D:\model\yolov11\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'D:\model\yolov11\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=300,
                          imgsz=640,
                          batch=64,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                         # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                         #  amp = True
                          )
相关推荐
数据雕塑家17 小时前
【网络故障排查实战】多台机器互ping异常:MAC地址冲突引发的网络“薛定谔猫“现象
网络·macos
duyinbi751717 小时前
【计算机视觉实践】:基于YOLOv8-BIMAFPN的海洋漏油事件检测与分类系统实现_2
yolo·计算机视觉·分类
闲人编程18 小时前
商品管理与库存系统
服务器·网络·数据库·python·api·数据模型·codecapsule
2501_9399090518 小时前
flannel vs calico网络
网络
一只小鱼儿吖18 小时前
携趣HTTP代理浏览器设置器(PC版)使用指南
网络·网络协议·http
进击切图仔18 小时前
Realsense 相机测试及说明
网络·人工智能·深度学习·数码相机
头发够用的程序员18 小时前
Ultralytics 代码库深度解读【六】:数据加载机制深度解析
人工智能·pytorch·python·深度学习·yolo·边缘计算·模型部署
以太浮标19 小时前
华为eNSP模拟器综合实验之- PPP协议解析及配置案例
运维·网络·华为·信息与通信
乾元19 小时前
企业无线的 AI 频谱与功率自动优化——从人工勘测到“可学习的无线网络”(含真实室内工程案例)
服务器·网络·人工智能·网络协议·安全·信息与通信
西柚小萌新19 小时前
【计算机视觉CV:目标检测】--1.目标检测简介
目标检测·计算机视觉·目标跟踪