LinK3D: Linear Keypoints Representation for 3D LiDAR Point Cloud【翻译与解读】摘要 特征提取和匹配是许多机器人视觉任务的基本组成部分,如 2D 或 3D 目标检测、识别和配准。2D 特征提取和匹配已取得巨大成功。然而,在 3D 领域,当前方法由于描述性差和效率低,可能无法支持 3D LiDAR 传感器在机器人视觉任务中的广泛应用。为了解决这一限制,我们提出了一种新颖的 3D 特征表示方法:3D LiDAR 点云的线性关键点表示 (LinK3D)。LinK3D 的新颖之处在于它充分考虑了 LiDAR 点云的特性(如稀疏性和复杂性),并用其稳健的邻近关键点表示关键点,这在关键点描述中提