克服奖励欺骗:Meta发布全新后训练方式CGPO,编程水平直升5%,打破RLHF瓶颈在人工智能领域,奖励欺骗成为了多任务学习中的一大难题,严重影响了大型语言模型(LLMs)的表现。为了有效应对这一挑战,Meta近期推出了全新的后训练方法——Constrained Generative Policy Optimization(CGPO),该方法通过创新的混合评审机制和约束优化器,成功提升了模型的编程水平达5%。这一进展不仅突破了传统强化学习与人类反馈(RLHF)的瓶颈,还为未来的多任务学习提供了全新的优化路径。CGPO的推出意味着我们在提升AI模型效能、实现更高效的多目标优化方面迈出了重要