全参数DeepSeek(671B)企业部署方案

1.1 项目背景

甲方需求开发一个ChatBI智能体,需要模型有Text2SQL的能力,经测试,DeepSeek-V3版本的代码能力超越GPT-4o,故需要本地部署DeepSeek全参数版大模型。

1.2 部署方案

1.2.1 方案选择

采用DeepSeek-v3+vLLM方案

1.2.2 资源评估

由于DeepSeek的框架原生采用 FP8 训练,因此仅提供 FP8 权重,预估仅700GB+显存便可轻松运行。当然也可以转换到BF16,在半精度下,需1400GB+,而量化到int4时需要450GB+。以下是半精度下显存占用情况:(占用 490G 显存,需要 7张 80G A100,租赁成本约1000元1天)

1.2.3 服务器准备

  • 服务器硬件配置如下:
    • GPU:Nvidia A100(80G) GPU * 8
    • CPU:AMD EPYC 9K84 96-Core
    • 桥接方式:NVLink(桥接)
    • 内存:150G
    • 存储:2T
  • 深度学习环境配置如下:
    • 操作系统:Ubuntu22.04
    • PyTorch版本:2.5.1
    • Python版本:3.12
    • CUDA版本:12.4
    • 其他软件包版本根据DeepSeek v3项目requirement决定。

https://github.com/deepseek-ai/DeepSeek-V3

  • 多服务器部署方案(DeepSeek-V3+vLLM+RAY)

如果需要部署的是fp8,或者其它的量化版本,一台服务器就不够了。这个时候需要,Ray+vLLM进行部署

地址:https://github.com/ray-project/ray

2.3 部署流程

2.3.1 下载权重文件

到魔搭社区下载:https://www.modelscope.cn/

注,下载前需提前留出600G左右存储空间,用于保存模型权重

在服务器上安装依赖,用于下载模型权重文件

复制代码
pip install modelscope

执行命令,进行权重文件下载

复制代码
mkdir ./deepseek
modelscope download --model OPEA/DeepSeek-V3-int4-sym-gptq-inc --local_dir ./deepseek

需要经过漫长的等待,才能下载完!

2.3.2 代码访问

复制代码
import torch
from modelscope import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "./deepseek"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

messages = [
    {"role": "user", "content": "你好,请介绍下你自己!"}
]

input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)

2.3.3 vLLm部署

地址:https://github.com/vllm-project/vllm

vLLM v0.6.6 支持在 NVIDIA 和 AMD GPU 上以 FP8 和 BF16 模式进行 DeepSeek-V3 推理。除了标准技术外,vLLM 还提供了管道并行性,允许你在

学习更多 AI 大模型大模型全栈技术 https://www.yuque.com/lhyyh/ai

相关推荐
链上日记2 小时前
AIOT:用HealthFi重构全球健康金融体系的蓝海样本
人工智能·重构
xixixi777773 小时前
水印攻击中(鲁棒性攻击、表达攻击、解释攻击)的区别,详细解释清楚
图像处理·人工智能·计算机视觉·数字水印
十三画者3 小时前
【文献分享】利用 GeneTEA 对基因描述进行自然语言处理以进行过表达分析
人工智能·自然语言处理
洞见新研社3 小时前
家庭机器人,从科幻到日常的二十年突围战
大数据·人工智能·机器人
qzhqbb3 小时前
神经网络 - 循环神经网络
人工智能·rnn·神经网络
newxtc3 小时前
【湖北政务服务网-注册_登录安全分析报告】
人工智能·selenium·测试工具·安全·政务
Oxo Security3 小时前
【AI安全】提示词注入
人工智能·安全·网络安全·ai
跳跳糖炒酸奶3 小时前
第十章、GPT1:Improving Language Understanding by Generative Pre-Training(代码部分)
人工智能·自然语言处理·大模型·transformer·gpt1
Chubxu3 小时前
从零本地跑通 Suna:一套可复刻的调试实践
人工智能