ssa-cnn-gru

机器学习之心4 个月前
matlab·cnn·gru·attention·多变量时间序列预测·ssa-cnn-gru
SCI一区级 | Matlab实现SSA-CNN-GRU-Multihead-Attention多变量时间序列预测1.【SCI一区级】Matlab实现SSA-CNN-GRU-Multihead-Attention麻雀算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上;
机器学习之心10 个月前
attention·cnn-gru-att·se注意力机制·ssa-cnn-gru·多变量回归预测
回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)1.Matlab实现SSA-CNN-GRU-Attention麻雀优化卷积门控循环单元注意力机制多变量回归预测; 2.运行环境为Matlab2021b; 3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测, main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE多指标评价; 5.麻雀算法优化学习率,隐藏层节点,正则化系数;### 模型描述 注意力机制模块: SEBlock(Squeeze-and-Excitation Bloc
机器学习之心10 个月前
cnn-gru·多变量时间序列预测·ssa-cnn-gru·sam-attention·空间注意力机制
多维时序 | MATLAB实现SSA-CNN-GRU-SAM-Attention麻雀算法优化卷积网络结合门控循环单元网络融合空间注意力机制多变量时间序列预测多维时序 | MATLAB实现SSA-CNN-GRU-SAM-Attention麻雀算法优化卷积网络结合门控循环单元网络融合空间注意力机制多变量时间序列预测。
机器学习之心10 个月前
cnn-gru·卷积门控循环单元·时间序列预测·麻雀算法优化·ssa-cnn-gru
时序预测 | Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序列预测Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序列预测(完整源码和数据) 1.Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序列预测(完整源码和数据) 2.输入输出单个变量,时间序列预测预测; 3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高; 4.麻雀算法优化参数为:学习率,隐含层节点,正则化参数; 5.excel数据,方便替换,运行环境2020及以上。
机器学习之心1 年前
cnn-gru·卷积门控循环单元·数据分类预测·ssa·麻雀算法优化·1024程序员节·ssa-cnn-gru
分类预测 | MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测1.MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测,运行环境Matlab2021b及以上; 2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和门控循环单元(GRU)的数据分类预测程序; 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率,隐藏层节点,正则化系数,这3个关键参数。 程序语言为matlab,程序可出分类效果图,混淆矩阵图。 4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,
机器学习之心1 年前
attention·多变量时间序列预测·cnn-gru-att·ssa-cnn-gru-att·ssa-cnn-gru
多维时序 | MATLAB实现SSA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)1.MATLAB实现SSA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制); 2.运行环境为Matlab2021b; 3.data为数据集,excel数据,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测, main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价; 5.麻雀算法优化学习率,隐藏层节点,正则化系数;