SCI一区级 | Matlab实现SSA-CNN-GRU-Multihead-Attention多变量时间序列预测

目录

效果一览




基本介绍

1.【SCI一区级】Matlab实现SSA-CNN-GRU-Multihead-Attention麻雀算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.麻雀算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现SSA-CNN-GRU-Multihead-Attention多变量时间序列预测。
python 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

​
%%  数据平铺

%% 模型
numChannels = or_dim;
maxPosition = 256*2;
numHeads = 4;
numKeyChannels = numHeads*32;
layers = [ 
    sequenceInputLayer(numChannels,Name="input")
    positionEmbeddingLayer(numChannels,maxPosition,Name="pos-emb");
    additionLayer(2, Name="add")
options = trainingOptions(solver, ...
    'Plots','none', ...
    'MaxEpochs', maxEpochs, ...
    'MiniBatchSize', miniBatchSize, ...
    'Shuffle', shuffle, ...
    'InitialLearnRate', learningRate, ...
    'GradientThreshold', gradientThreshold, ...
    'ExecutionEnvironment', executionEnvironment);
​

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
Gyoku Mint1 小时前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
wheeldown1 小时前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11
山烛3 小时前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
小白的高手之路7 小时前
Matlab中的积分——函数int()和quadl()
matlab
机器学习之心9 小时前
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现
人工智能·神经网络·matlab·物理信息神经网络·二阶常微分方程
WangYan202214 小时前
MATLAB 2023a深度学习工具箱全面解析:从CNN、RNN、GAN到YOLO与U-Net,涵盖模型解释、迁移学习、时间序列预测与图像生成的完整实战指南
深度学习·matlab·matlab 2023a
迎风打盹儿14 小时前
均匀圆形阵抗干扰MATLAB仿真实录与特点解读
matlab·信号处理·抗干扰·均匀圆阵·波束合成
addaduvyhup20 小时前
【RNN-LSTM-GRU】第一篇 序列建模基础:理解数据的“顺序”之力
rnn·gru·lstm
THMAIL1 天前
机器学习从入门到精通 - 卷积神经网络(CNN)实战:图像识别模型搭建指南
linux·人工智能·python·算法·机器学习·cnn·逻辑回归
二向箔reverse1 天前
从传统CNN到残差网络:用PyTorch实现更强大的图像分类模型
网络·pytorch·cnn