P-Tuning,提升预训练语言模型的自然语言理解能力人工智能咨询培训老师叶梓 转载标明出处预训练语言模型在具体任务上的表现往往依赖于精心设计的离散提示(prompts),但这些提示有着不稳定性,微小的变化可能导致性能的大幅下降。清华大学和麻省理工学院的研究团队提出了一种名为P-Tuning的新方法,通过引入可训练的连续提示嵌入(continuous prompt embeddings),与离散提示相结合,旨在提高模型的稳定性和性能。图1为使用P-Tuning方法在SuperGLUE的7个开发数据集上的平均得分。显示P-Tuning方法相对于原始提示(没有使