基于Elman神经网络的电力负荷预测根据神经网络运行过程中的信息流向,可将神经网络可分为前馈式和反馈式两种基本类型。前馈式网络通过引入隐藏层以及非线性转移函数可以实现复杂的非线性映射功能。但前馈式网络的输出仅由当前输人和权矩阵决定,而与网络先前的输出结果无关。反馈型神经网络也称递归网络或回归网络。反馈神经网络的输入包括有延迟的输入或者输出数据的反馈,由于存在有反馈的输入,所以它是一种反馈动力学系统;这种系统的学习过程就是它的神经元状态的变化过程,这个过程最终会达到一个神经元状态不变的稳定态,也标志着学习过程的结束。 反馈网络的动态学习特征,