国产化框架PaddleClas结合Swanlab进行杂草分类杂草是农业中的主要问题之一,对作物生长和产量造成严重威胁。传统的手动识别和管理方式效率低下且不够精确,因此需要借助先进的计算机视觉技术来提升农业生产的效率和质量。ResNet作为一种深度学习模型,在处理复杂的图像分类任务中表现出色,不仅可以有效解决农田中杂草多样化、形态复杂的问题,还能够推动农业智能化发展,减少对化学农药的依赖,实现农业可持续发展的目标。通过利用ResNet进行杂草分类,可以为农民提供更智能、精确的农业管理方案,促进农业生产效率的提升和农业产业的现代化进程。因此,本项目使用国产化框架Pad