时序预测 | 基于DLinear+PatchTST多变量时间序列预测模型(pytorch)DLinear+PatchTST多变量时间序列 dlinear,patchtst python代码,pytorch架构 适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列预测。 Patchest是2023年发表了一个新的模型,它在时间序列分析的多个任务中实现了最先进的结果。创新点超级强。 模型精度高. 功能如下: 1.多变量输入,单变量输出/可改多输出 2.多时间步预测,单时间步预测 3.评价指标:R方 RMSE MAE MAPE 对比图 4.数据从excel/csv文