时序预测 | 基于DLinear+PatchTST多变量时间序列预测模型(pytorch)

目录

效果一览

基本介绍

DLinear+PatchTST多变量时间序列

dlinear,patchtst

python代码,pytorch架构

适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列预测。

Patchest是2023年发表了一个新的模型,它在时间序列分析的多个任务中实现了最先进的结果。创新点超级强。

模型精度高.

功能如下:

1.多变量输入,单变量输出/可改多输出

2.多时间步预测,单时间步预测

3.评价指标:R方 RMSE MAE MAPE

对比图

4.数据从excel/csv文件中读取

5.最终结果输入到一个csv文件中,可以供下一步使用

代码带数据,注释清晰,适合新手小白

程序设计

  • 完整程序和数据获取方式:私信博主回复基于DLinear+PatchTST多变量时间序列预测模型(pytorch)

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
HPC_fac1305206781628 分钟前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou3 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书3 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd3 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao4 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
小二·5 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼6 小时前
Python 神经网络项目常用语法
python
一念之坤7 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812278 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder8 小时前
Python入门(12)--数据处理
开发语言·python