决策树(Decison Tree)—有监督学习方法、概率模型、生成模型、非线性模型、非参数化模型、批量学习ID3算法 输入:训练数据集(T= { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) } \left\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\right\} {(x1,y1),(x2,y2),⋯,(xN,yN)}),特征集A阀值 ε \varepsilon ε 输出:决策树T (1)若D中所有实例属于同一类 C k C_k Ck,则T为单节点树,并将 C k C_k Ck作为该节点的类标记,返回T; (2)若A=