可解释性机器学习的目标为了解释比如决策树、随机森林的意义,我们首先应该定义可解释性的目标是什么。或者 说什么才是最好的可解释性的结果呢?很多人对于可解释性机器学习会有一个误解,觉得一 个好的可解释性就是要告诉我们整个模型在做什么事。我们要了解模型的一切,我们要知道 它到底是怎么做出一个决断的。但是这件事情真的是有必要的吗?虽然我们说机器学习模型, 深度网络是一个黑盒子,不能相信它,但世界上有很多黑盒子,比如人脑也是黑盒子。我们其 实也并不完全知道,人脑的运作原理,但是我们可以相信,另外一个人做出的决断。那为什么 深度网络是一个