可解释性机器学习的目标

为了解释比如决策树、随机森林的意义,我们首先应该定义可解释性的目标是什么。或者 说什么才是最好的可解释性的结果呢?很多人对于可解释性机器学习会有一个误解,觉得一 个好的可解释性就是要告诉我们整个模型在做什么事。我们要了解模型的一切,我们要知道 它到底是怎么做出一个决断的。但是这件事情真的是有必要的吗?虽然我们说机器学习模型, 深度网络是一个黑盒子,不能相信它,但世界上有很多黑盒子,比如人脑也是黑盒子。我们其 实也并不完全知道,人脑的运作原理,但是我们可以相信,另外一个人做出的决断。那为什么 深度网络是一个黑盒子,我们就没有办法相信其做出的决断呢?我们可以相信人脑做出的决 断,但是我们不可以相信深度网络做出的决断,这是为什么呢?

以下是一个和机器学习完全无关的心理学实验,这个实验是1970年一个哈佛大学教授做 的。这个实验是这样,在哈佛大学图书馆的打印机经常会有很多人都排队要印东西,这个时候 如果有一个人跟他前面的人说拜托请让我先印5页,这个时候你觉得这个人会答应吗?据统 计有60%的人会让他先印。但这个时候你只要把刚才问话的方法稍微改一下,你说拜托请让 我先印,因为我赶时间,他是不是真的赶时间没人知道,但是当你说你有一个理由所以你要先 印的时候,这个时候接受的程度变成94%。神奇的事情是,就算你的理由稍微改一下,比如 说请让我先印因为我需要先印,仅仅是这个样子接受的程度也变成93%。所以人就是需要一 个理由,你为什么要先印,你只要讲出一个理由,就算你的理由是因为我需要先印大家也会接 受。

所以会不会可解释性机器学习也是同样的道理。在可解释性机器学习中,好的解释就是 人能接受的解释,人就是需要一个理由让我们觉得高兴。因为很多人听到,深度网络是一个黑 盒子他就不爽,但是你告诉他说这个是可以被解释的,给他一个理由,他就高兴了。所以或许 好的解释就是让人高兴的解释。其实这个想法,这个技术的进展是蛮接近的。

相关推荐
魔障阿Q15 分钟前
华为310P3模型转换及python推理
人工智能·python·深度学习·yolo·计算机视觉·华为
洛华36320 分钟前
初识opencv05——图像预处理4
人工智能·opencv·计算机视觉
SugarPPig27 分钟前
“非参数化”大语言模型与RAG的关系?
人工智能·语言模型·自然语言处理
Sui_Network31 分钟前
Ika Network 正式发布,让 Sui 智能合约可管理跨链资产
人工智能·物联网·web3·区块链·智能合约·量子计算
禾风wyh36 分钟前
【目标检测】小样本度量学习
人工智能·计算机视觉·目标跟踪
dylan55_you38 分钟前
掌控AI工具链:用 Python + API 构建 AI MCP 服务器
人工智能·ai·mcp
CoovallyAIHub43 分钟前
工业质检新突破!YOLO-pdd多尺度PCB缺陷检测算法实现99%高精度
深度学习·算法·计算机视觉
悟乙己1 小时前
译|生存分析Survival Analysis案例入门讲解(一)
人工智能·机器学习·数据挖掘·生存分析·因果推荐
无奈何杨1 小时前
从“指点江山”到“赛博求雨”的心路历程
人工智能
老贾专利烩1 小时前
智能健康项链专利拆解:ECG 与 TBI 双模态监测的硬件架构与信号融合
人工智能·科技·健康医疗