可解释性机器学习的目标

为了解释比如决策树、随机森林的意义,我们首先应该定义可解释性的目标是什么。或者 说什么才是最好的可解释性的结果呢?很多人对于可解释性机器学习会有一个误解,觉得一 个好的可解释性就是要告诉我们整个模型在做什么事。我们要了解模型的一切,我们要知道 它到底是怎么做出一个决断的。但是这件事情真的是有必要的吗?虽然我们说机器学习模型, 深度网络是一个黑盒子,不能相信它,但世界上有很多黑盒子,比如人脑也是黑盒子。我们其 实也并不完全知道,人脑的运作原理,但是我们可以相信,另外一个人做出的决断。那为什么 深度网络是一个黑盒子,我们就没有办法相信其做出的决断呢?我们可以相信人脑做出的决 断,但是我们不可以相信深度网络做出的决断,这是为什么呢?

以下是一个和机器学习完全无关的心理学实验,这个实验是1970年一个哈佛大学教授做 的。这个实验是这样,在哈佛大学图书馆的打印机经常会有很多人都排队要印东西,这个时候 如果有一个人跟他前面的人说拜托请让我先印5页,这个时候你觉得这个人会答应吗?据统 计有60%的人会让他先印。但这个时候你只要把刚才问话的方法稍微改一下,你说拜托请让 我先印,因为我赶时间,他是不是真的赶时间没人知道,但是当你说你有一个理由所以你要先 印的时候,这个时候接受的程度变成94%。神奇的事情是,就算你的理由稍微改一下,比如 说请让我先印因为我需要先印,仅仅是这个样子接受的程度也变成93%。所以人就是需要一 个理由,你为什么要先印,你只要讲出一个理由,就算你的理由是因为我需要先印大家也会接 受。

所以会不会可解释性机器学习也是同样的道理。在可解释性机器学习中,好的解释就是 人能接受的解释,人就是需要一个理由让我们觉得高兴。因为很多人听到,深度网络是一个黑 盒子他就不爽,但是你告诉他说这个是可以被解释的,给他一个理由,他就高兴了。所以或许 好的解释就是让人高兴的解释。其实这个想法,这个技术的进展是蛮接近的。

相关推荐
R²AIN SUITE几秒前
快消零售AI转型:R²AIN SUITE如何破解效率困局
大数据·人工智能·产品运营
ONLYOFFICE4 分钟前
集成 ONLYOFFICE 与 AI 插件,为您的服务带来智能文档编辑器
人工智能·ai·编辑器·onlyoffice·文档编辑器·文档预览·文档协作
一个天蝎座 白勺 程序猿9 分钟前
GpuGeek全栈AI开发实战:从零构建企业级大模型生产管线(附完整案例)
人工智能·gpugeek
love530love12 分钟前
家用或办公 Windows 电脑玩人工智能开源项目配备核显的必要性(含 NPU 及显卡类型补充)
人工智能·windows·python·开源·电脑
深圳市青牛科技实业有限公司14 分钟前
D2203使用手册—高压、小电流LDO产品4.6V~36V、150mA
人工智能·单片机·嵌入式硬件·电动工具·工业散热风扇
shengjk118 分钟前
序列化和反序列化:从理论到实践的全方位指南
java·大数据·开发语言·人工智能·后端·ai编程
AI大模型顾潇18 分钟前
[特殊字符] 本地大模型编程实战(29):用大语言模型LLM查询图数据库NEO4J(2)
前端·数据库·人工智能·语言模型·自然语言处理·prompt·neo4j
2501_9153743533 分钟前
数据清洗的艺术:如何为AI模型准备高质量数据集?
人工智能·机器学习
山北雨夜漫步36 分钟前
机器学习 Day17 朴素贝叶斯算法-----概率论知识
人工智能·算法·机器学习
愚公搬代码1 小时前
【愚公系列】《Manus极简入门》038-数字孪生设计师:“虚实映射师”
人工智能·agi·ai agent·智能体·manus