大R玩家流失预测在休闲社交游戏中的应用预测玩家何时会离开游戏为延长玩家生命周期和增加收入贡献创造了独特的机会。玩家可以被激励留下来,战略性地与公司组合中的其他游戏交叉链接,或者作为最后的手段,通过游戏内广告传递给其他公司。本文重点预测休闲社交游戏中高价值玩家的流失,并尝试评估可以从预测流失模型中获得的业务影响。我们比较了四种常见分类算法在两个拥有数百万玩家的休闲社交游戏中的预测性能。此外,我们实现了一个隐马尔可夫模型,以明确处理时间动态。我们发现神经网络在曲线下面积(AUC)方面实现了最佳预测性能。此外,为了评估流失预测的业务价值,我们在其中