基于多模态脑电、音频与视觉信号的情感识别算法【Nature核心期刊,EAV:EEG-音频-视频数据集】理解情感状态对于开发下一代人机交互界面至关重要。社交互动中的人类行为会引发受感知输入影响的心理生理过程。因此,探索大脑功能与人类行为的努力或将推动具有类人特质人工智能模型的发展。这里原作者推出一个多模态情感数据集,包含42名参与者的30通道脑电图(EEG)、音频和视频记录数据。每位参与者均参与基于线索的对话情境,诱发五种特定情绪:中性、愤怒、快乐、悲伤及平静。实验过程中,每位参与者完成200次涵盖倾听与表达的双向互动,全体参与者累计产生8,400次互动样本。采用成熟的深度神经网络(DNN)方法,对各模态的