【论文阅读】一些多轮对话文章的体会 ACL 2023

前言

  • 本文是对昨天看到的ACL 2023三篇多轮对话文章的分享
  • 这三个工作都是根据一些额外属性控制输出的工作,且评估的方面比较相似,可以借鉴

方法

这几篇文章都不是做general任务的,倾向于通过一些额外信息,来做specific任务

  • 【1】提出应该在instance-level上而不是task-level上生成attribute prompt(i.e. user's persona/dialogue intent)

    • train a lightweight prompt module that takes as input a control attribute(shallow and deep version)
    • 而不是 training static soft tokens for the dialogue task
  • 【2】在inference阶段,基于对话历史预测persona信息来定制dialogue agent,而不依赖显式的persona描述

    • 提出两种方式的persona detection model:
      • 给定模型对话历史,训练其输出的向量与persona向量(通过输入persona description来编码得到)近似
      • 给定模型对话历史,训练其直接生成persona description
    • 多任务训练:将persona detection model 与 dialogue context encoder联合训练
      • 分享第一层参数,可以看作是一个通用的对话信息编码器
      • 训练persona detection model与dialogue model一起最大化ground truth response的概率
  • 【3】生成包含特定语法items的回复(比如现在完成时,虚拟语气,定语从句),尝试了在DialoGPT上用强化学习的方式与基于GPT-3的in-context learning方式,发现都可以

数据集与评估

  • 【1】Dailydialog for label control 与 FoCus for document control

    • Dailydialog :对每句话都标注了dialogue act(图中是标记的是emotiong,act在另一个文件中),一共四种(陈述,问题,指示,承诺)

    • FoCus: 包含user's persona,希望构建 dialogue agent

    • 评估response

      • controllability for customizing responses
      • n-gram based: BLEU, NIST, ROUGE-L, METEOR for fluency and adequacy
      • distinct n-gram: Dist and Entropy for diversity
      • humane evaluation for consistency between dialogue context and response and attribute controllability
  • 【2】PersonaChat and Dailydialog

    • PersonaChat(arxiv 2018)

    • 为了验证泛化性,在Dailydialog上测试

    • 评估:

      • ppl for fluency
      • Dist for diversity
      • P-Cover for covering persona information
      • human evaluation(20 annotators)
      • etc.
  • 【3】Dailydilog(SCoRE 来训练分类器)

    • 评估:
      • Dist for diversity
      • G-Ration for containing the item
      • GOAL for fluency

参考

相关推荐
缘分开始t6212381 分钟前
全球直播新标杆:DeepSeek融合全平台AI无人直播,构建直播流量永动机!
人工智能·智能电视
天天向上杰26 分钟前
通义灵码AI程序员
人工智能·aigc·ai编程
sendnews37 分钟前
AI赋能教育,小猿搜题系列产品携手DeepSeek打造个性化学习新体验
人工智能
悠然的笔记本39 分钟前
机器学习,我们主要学习什么?
机器学习
紫雾凌寒1 小时前
解锁机器学习核心算法|神经网络:AI 领域的 “超级引擎”
人工智能·python·神经网络·算法·机器学习·卷积神经网络
WBingJ1 小时前
2月17日深度学习日记
人工智能
zhengyawen6661 小时前
深度学习之图像分类(一)
人工智能·深度学习·分类
莫莫莫i1 小时前
拆解微软CEO纳德拉战略蓝图:AI、量子计算、游戏革命如何改写未来规则!
人工智能·微软·量子计算
C#Thread1 小时前
机器视觉--图像的运算(加法)
图像处理·人工智能·计算机视觉
无极工作室(网络安全)1 小时前
机器学习小项目之鸢尾花分类
人工智能·机器学习·分类