【论文阅读】一些多轮对话文章的体会 ACL 2023

前言

  • 本文是对昨天看到的ACL 2023三篇多轮对话文章的分享
  • 这三个工作都是根据一些额外属性控制输出的工作,且评估的方面比较相似,可以借鉴

方法

这几篇文章都不是做general任务的,倾向于通过一些额外信息,来做specific任务

  • 【1】提出应该在instance-level上而不是task-level上生成attribute prompt(i.e. user's persona/dialogue intent)

    • train a lightweight prompt module that takes as input a control attribute(shallow and deep version)
    • 而不是 training static soft tokens for the dialogue task
  • 【2】在inference阶段,基于对话历史预测persona信息来定制dialogue agent,而不依赖显式的persona描述

    • 提出两种方式的persona detection model:
      • 给定模型对话历史,训练其输出的向量与persona向量(通过输入persona description来编码得到)近似
      • 给定模型对话历史,训练其直接生成persona description
    • 多任务训练:将persona detection model 与 dialogue context encoder联合训练
      • 分享第一层参数,可以看作是一个通用的对话信息编码器
      • 训练persona detection model与dialogue model一起最大化ground truth response的概率
  • 【3】生成包含特定语法items的回复(比如现在完成时,虚拟语气,定语从句),尝试了在DialoGPT上用强化学习的方式与基于GPT-3的in-context learning方式,发现都可以

数据集与评估

  • 【1】Dailydialog for label control 与 FoCus for document control

    • Dailydialog :对每句话都标注了dialogue act(图中是标记的是emotiong,act在另一个文件中),一共四种(陈述,问题,指示,承诺)

    • FoCus: 包含user's persona,希望构建 dialogue agent

    • 评估response

      • controllability for customizing responses
      • n-gram based: BLEU, NIST, ROUGE-L, METEOR for fluency and adequacy
      • distinct n-gram: Dist and Entropy for diversity
      • humane evaluation for consistency between dialogue context and response and attribute controllability
  • 【2】PersonaChat and Dailydialog

    • PersonaChat(arxiv 2018)

    • 为了验证泛化性,在Dailydialog上测试

    • 评估:

      • ppl for fluency
      • Dist for diversity
      • P-Cover for covering persona information
      • human evaluation(20 annotators)
      • etc.
  • 【3】Dailydilog(SCoRE 来训练分类器)

    • 评估:
      • Dist for diversity
      • G-Ration for containing the item
      • GOAL for fluency

参考

相关推荐
智源研究院官方账号几秒前
智源联合南开大学开源Chinese-LiPS中文多模态语音识别数据集
人工智能·语音识别
北温凉1 分钟前
【学习笔记】机器学习(Machine Learning) | 第七章|神经网络(1)
笔记·机器学习
Thomas_YXQ10 分钟前
Unity3D Overdraw性能优化详解
开发语言·人工智能·性能优化·unity3d
家庭云计算专家24 分钟前
还没用过智能文档编辑器吗?带有AI插件的ONLYOFFICE介绍
服务器·人工智能·docker·容器·编辑器
web150854159351 小时前
Python线性回归:从理论到实践的完整指南
python·机器学习·线性回归
ayiya_Oese1 小时前
[训练和优化] 3. 模型优化
人工智能·python·深度学习·神经网络·机器学习
小众AI1 小时前
Suna: 开源多面手 AI 代理
人工智能·开源
就不爱吃大米饭1 小时前
Chrome代理IP配置教程常见方式附问题解答
大数据·人工智能·搜索引擎
-一杯为品-1 小时前
【深度学习】#11 优化算法
人工智能·深度学习·算法
兔兔爱学习兔兔爱学习1 小时前
读论文alexnet:ImageNet Classification with Deep Convolutional Neural Networks
人工智能