【论文阅读】一些多轮对话文章的体会 ACL 2023

前言

  • 本文是对昨天看到的ACL 2023三篇多轮对话文章的分享
  • 这三个工作都是根据一些额外属性控制输出的工作,且评估的方面比较相似,可以借鉴

方法

这几篇文章都不是做general任务的,倾向于通过一些额外信息,来做specific任务

  • 【1】提出应该在instance-level上而不是task-level上生成attribute prompt(i.e. user's persona/dialogue intent)

    • train a lightweight prompt module that takes as input a control attribute(shallow and deep version)
    • 而不是 training static soft tokens for the dialogue task
  • 【2】在inference阶段,基于对话历史预测persona信息来定制dialogue agent,而不依赖显式的persona描述

    • 提出两种方式的persona detection model:
      • 给定模型对话历史,训练其输出的向量与persona向量(通过输入persona description来编码得到)近似
      • 给定模型对话历史,训练其直接生成persona description
    • 多任务训练:将persona detection model 与 dialogue context encoder联合训练
      • 分享第一层参数,可以看作是一个通用的对话信息编码器
      • 训练persona detection model与dialogue model一起最大化ground truth response的概率
  • 【3】生成包含特定语法items的回复(比如现在完成时,虚拟语气,定语从句),尝试了在DialoGPT上用强化学习的方式与基于GPT-3的in-context learning方式,发现都可以

数据集与评估

  • 【1】Dailydialog for label control 与 FoCus for document control

    • Dailydialog :对每句话都标注了dialogue act(图中是标记的是emotiong,act在另一个文件中),一共四种(陈述,问题,指示,承诺)

    • FoCus: 包含user's persona,希望构建 dialogue agent

    • 评估response

      • controllability for customizing responses
      • n-gram based: BLEU, NIST, ROUGE-L, METEOR for fluency and adequacy
      • distinct n-gram: Dist and Entropy for diversity
      • humane evaluation for consistency between dialogue context and response and attribute controllability
  • 【2】PersonaChat and Dailydialog

    • PersonaChat(arxiv 2018)

    • 为了验证泛化性,在Dailydialog上测试

    • 评估:

      • ppl for fluency
      • Dist for diversity
      • P-Cover for covering persona information
      • human evaluation(20 annotators)
      • etc.
  • 【3】Dailydilog(SCoRE 来训练分类器)

    • 评估:
      • Dist for diversity
      • G-Ration for containing the item
      • GOAL for fluency

参考

相关推荐
智驱力人工智能11 分钟前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448715 分钟前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile15 分钟前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能57718 分钟前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥20 分钟前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty72521 分钟前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h38 分钟前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路40 分钟前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿43 分钟前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue612312311 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘