Kafka

1.定义

Kafka:一个分布式基于发布/订阅模式的消息队列。

发布者发布消息进入队列后,每个订阅者都能在一定时间内获取发布的消息(Kafka:消费者通过主动拉取pull队列)。

缺点:即使没有消息,消费者仍然需要轮询消息队列

pull模式:可以根据 Consumer的消费能力以适当的速率消费消息,消费的方式、速率可以由消费者制定。

2.作用

  • 解耦:程序请求结束后可直接返回,无需等待任务执行。 程序与执行独立。
  • 缓冲:解决生产信息与消费信息处理速度不一致的情况
  • 峰值处理能力:应对突发访问量剧增的情况
  • 异步通信

3.Kafka架构

Kafka主要分为生产者、Kafka集群、消费者三大部分。

集群由多个Broker(代理服务器)组成,消息以Topic(主题)为分类,较大的主题可以分为多个Partition(分区)。由于分布式存储的缘故,每个分区都会成为leader/follower的一种,数据只从leader分区进行传输,follower分区仅作为备份。

消费者可以组成消费者组(Consumer group),每一个消费组都能够获得全量的消息,同一个消费者组中只有1个人可以获得相同的消息队列中的消息(提高并发)。一般情况下一个应用对应着一个消费组。

消息队列中的offset(偏移量,记录现在接收到第几条消息了)在0.9版本之前存储在ZK中,在之后存储在Kafka集群中的系统Topic中,因为消费者拉取消息时会频繁的跟ZK进行交互影响效率。

4.存储方式

Kafka的消息数据是存放在于磁盘 上的。因为经过对磁盘读写的一系列优化,磁盘的顺序读取速度>内存随机访问速度

在文件中的实际存储是以Partition作为单位 的,文件夹的命名规则:<topic_name>-<partition_id>

假设我们现在 Kafka 集群只有一个 Broker,我们创建 2 个 Topic 名称分别为:「topic1」和「topic2」,Partition 数量分别为 1、2,那么我们的根目录下就会创建如下三个文件夹:

复制代码
| --topic1-0
| --topic2-0
| --topic2-1

当客户端写入消息时,文件夹下会生成Segment文件(包含log、index两部分),log文件是消息的内容,index是消息的索引。

消息的写入:Partition的写入为尾部追加,这样的顺序写磁盘操作让 Kafka 的效率非常高。

消息的删除:消息被消费后不会立即删除,只会定期删除过期的Segment文件。

5.docker创建集群(kraft版 无zookeeper)

Docker单机部署kafka集群https://www.jianshu.com/p/67a903d6c44c

Docker多机部署kafka集群:https://www.cnblogs.com/linjiangplus/p/16424137.html

未完待续...

参考:

https://zhuanlan.zhihu.com/p/74063251

相关推荐
MZWeiei1 小时前
Spark Streaming 内部运行机制详解
大数据·分布式·spark
yuanlaile10 小时前
RabbitMQ高并发秒杀、抢购系统、预约系统底层实现逻辑
分布式·rabbitmq·rabbitmq高并发·rabbitmq项目实战·rabbitmq实战教程
MYBOYER11 小时前
Kafka、RabbitMQ、RocketMQ的区别
kafka·rabbitmq·rocketmq
StarRocks_labs12 小时前
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
大数据·数据库·starrocks·分布式·spark·iris·物化视图
掘金-我是哪吒14 小时前
分布式微服务系统架构第131集:fastapi-python
分布式·python·微服务·系统架构·fastapi
the_3rd_bomb14 小时前
MNIST DDP 分布式数据并行
分布式·mnist
what_201814 小时前
分布式2(限流算法、分布式一致性算法、Zookeeper )
分布式·网络协议·rpc
what_201816 小时前
分布式1(cap base理论 锁 事务 幂等性 rpc)
分布式
只因只因爆16 小时前
spark小任务
大数据·分布式·spark
椰椰椰耶18 小时前
【RabbitMQ】路由模式和通配符模式的具体实现
分布式·rabbitmq