class Solution {
public int rob(int[] nums) {
if(nums.length == 0 || nums == null){
return 0;
}
if(nums.length == 1){
return nums[0];
}
int[] dp = new int[nums.length];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for(int i = 2; i < nums.length; i++){
dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i]);
}
return dp[nums.length-1];
}
}
class Solution {
public int rob(int[] nums) {
if(nums.length == 0 || nums == null){
return 0;
}
if(nums.length == 1){
return nums[0];
}
int len = nums.length;
return Math.max(robCiecle(nums, 0, len-1), robCiecle(nums, 1, len));
}
public int robCiecle(int[] nums, int start, int end){
int x = 0, y = 0, z = 0;
for(int i = start; i < end; i++){
x = y;
y = z;
z = Math.max(y, x + nums[i]);
}
return z;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rob(TreeNode root) {
int[] res = robAction(root);
return Math.max(res[0], res[1]);
}
public int[] robAction(TreeNode root){
int[] res = new int[2];
if(root == null){
return res;
}
int[] left = robAction(root.left);
int[] right = robAction(root.right);
res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
res[1] = root.val + left[0] + right[0];
return res;
}
}