OpenCV图像处理-视频分割静态背景-MOG/MOG2/GMG

视频分割背景

1.概念介绍

视频背景扣除原理:视频是一组连续的帧(一幅幅图组成),帧与帧之间关系密切(GOP/group of picture),在GOP中,背景几乎是不变的,变的永远是前景。

  • 背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术
  • 顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。

2. 函数介绍

MOG算法

cv2.createBackgroundSubtractorMOG(history, nmixtures, backgroundRatio, noiseSigma)

history:用于训练背景的帧数,默认为200帧

nmixtures:高斯范围值,默认为5;5*5的卷积核

backgroindRatio:背景比率,默认0.7

noiseSigma:默认0,自动降噪

代码示例:

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
mog = cv2.bgsegm.createBackgroundSubtractorMOG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    cv2.imshow('text', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

MOG2算法

MOG2增加的是对阴影的识别,但是会产生更多的噪点。

cv2.createBackgroundSubtractorMOG2()

参数同MOG一样

detectShadows:是否检测阴影,默认为True

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
mog = cv2.createBackgroundSubtractorMOG2()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

GMG算法

GMG算法的抗噪性更强,但是该算法有缓存初始帧,即缓存的帧数不显示。

算法:cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=120)

initializationFrames:默认帧数为120,需要吃掉120帧,对之后的帧进行优化。

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
# mog = cv2.createBackgroundSubtractorMOG2()
gmg = cv2.bgsegm.createBackgroundSubtractorGMG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = gmg.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

原视频获取链接

以上就是视频分割的基本使用方式,详情烦请参考相关论文和相关文档。

相关推荐
侯孟禹4 小时前
海康摄像机SDK获取视频流转码显示
opencv
yolo_guo6 小时前
opencv 学习: QA_01 什么是图像锐化
linux·c++·opencv·计算机视觉
CS创新实验室1 天前
OpenCV:从经典到现代,计算机视觉的基石与未来
人工智能·opencv·计算机视觉·cv
XXYBMOOO1 天前
探索图像处理中的九种滤波器:从模糊到锐化与边缘检测
图像处理·人工智能·python·opencv·计算机视觉
胖墩会武术1 天前
【OpenCV图像处理】图像去噪:cv.fastNlMeansDenoising()
图像处理·opencv·计算机视觉
Valueyou241 天前
论文阅读——CenterNet
论文阅读·python·opencv·目标检测·计算机视觉
AndrewHZ1 天前
【图像处理基石】什么是光流法?
图像处理·算法·计算机视觉·目标跟踪·cv·光流法·行为识别
hixiong1232 天前
C# OpenCVSharp实现Hand Pose Estimation Mediapipe
开发语言·opencv·ai·c#·手势识别
Dm_dotnet2 天前
OpenCVSharp:ArUco 标记检测与透视变换
opencv
PixelMind2 天前
【IQA技术专题】 基于多模态大模型的IQA Benchmark:Q-BENCH
图像处理·深度学习·lmm·iqa