OpenCV图像处理-视频分割静态背景-MOG/MOG2/GMG

视频分割背景

1.概念介绍

视频背景扣除原理:视频是一组连续的帧(一幅幅图组成),帧与帧之间关系密切(GOP/group of picture),在GOP中,背景几乎是不变的,变的永远是前景。

  • 背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术
  • 顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。

2. 函数介绍

MOG算法

cv2.createBackgroundSubtractorMOG(history, nmixtures, backgroundRatio, noiseSigma)

history:用于训练背景的帧数,默认为200帧

nmixtures:高斯范围值,默认为5;5*5的卷积核

backgroindRatio:背景比率,默认0.7

noiseSigma:默认0,自动降噪

代码示例:

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
mog = cv2.bgsegm.createBackgroundSubtractorMOG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    cv2.imshow('text', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

MOG2算法

MOG2增加的是对阴影的识别,但是会产生更多的噪点。

cv2.createBackgroundSubtractorMOG2()

参数同MOG一样

detectShadows:是否检测阴影,默认为True

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
mog = cv2.createBackgroundSubtractorMOG2()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

GMG算法

GMG算法的抗噪性更强,但是该算法有缓存初始帧,即缓存的帧数不显示。

算法:cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=120)

initializationFrames:默认帧数为120,需要吃掉120帧,对之后的帧进行优化。

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
# mog = cv2.createBackgroundSubtractorMOG2()
gmg = cv2.bgsegm.createBackgroundSubtractorGMG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = gmg.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

原视频获取链接

以上就是视频分割的基本使用方式,详情烦请参考相关论文和相关文档。

相关推荐
沃达德软件10 小时前
图像处理与复原技术
图像处理·人工智能·深度学习·神经网络·目标检测·计算机视觉·目标跟踪
Dfreedom.10 小时前
图像滤波:非线性滤波与边缘保留技术
图像处理·人工智能·opencv·计算机视觉·非线性滤波·图像滤波
Dfreedom.10 小时前
开运算与闭运算:图像形态学中的“清道夫”与“修复匠”
图像处理·python·opencv·开运算·闭运算
AomanHao11 小时前
【ISP】图像质量评价指标-通透度
图像处理·通透度·评价标准
wgfhill12 小时前
【亲测可用】照片相似度检测删除一键清理重复图片!智能相似度检测工具,释放海量存储空间
图像处理
格林威13 小时前
Baumer相机铆钉安装状态检测:判断铆接是否到位的 5 个核心算法,附 OpenCV+Halcon 的实战代码!
人工智能·opencv·算法·计算机视觉·视觉检测·工业相机·堡盟相机
李昊哲小课13 小时前
OpenCV Haar级联分类器人脸检测完整教程
人工智能·opencv·计算机视觉
格林威14 小时前
Baumer相机铸件气孔与缩松识别:提升铸造良品率的 6 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·opencv·算法·安全·计算机视觉·堡盟相机·baumer相机
光羽隹衡14 小时前
计算机视觉——Opencv(图像金字塔)
人工智能·opencv·计算机视觉
sali-tec14 小时前
C# 基于OpenCv的视觉工作流-章20-仿射变换
图像处理·人工智能·opencv·算法·计算机视觉