OpenCV图像处理-视频分割静态背景-MOG/MOG2/GMG

视频分割背景

1.概念介绍

视频背景扣除原理:视频是一组连续的帧(一幅幅图组成),帧与帧之间关系密切(GOP/group of picture),在GOP中,背景几乎是不变的,变的永远是前景。

  • 背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术
  • 顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。

2. 函数介绍

MOG算法

cv2.createBackgroundSubtractorMOG(history, nmixtures, backgroundRatio, noiseSigma)

history:用于训练背景的帧数,默认为200帧

nmixtures:高斯范围值,默认为5;5*5的卷积核

backgroindRatio:背景比率,默认0.7

noiseSigma:默认0,自动降噪

代码示例:

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
mog = cv2.bgsegm.createBackgroundSubtractorMOG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    cv2.imshow('text', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

MOG2算法

MOG2增加的是对阴影的识别,但是会产生更多的噪点。

cv2.createBackgroundSubtractorMOG2()

参数同MOG一样

detectShadows:是否检测阴影,默认为True

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
mog = cv2.createBackgroundSubtractorMOG2()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

GMG算法

GMG算法的抗噪性更强,但是该算法有缓存初始帧,即缓存的帧数不显示。

算法:cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=120)

initializationFrames:默认帧数为120,需要吃掉120帧,对之后的帧进行优化。

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
# mog = cv2.createBackgroundSubtractorMOG2()
gmg = cv2.bgsegm.createBackgroundSubtractorGMG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = gmg.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

原视频获取链接

以上就是视频分割的基本使用方式,详情烦请参考相关论文和相关文档。

相关推荐
柠檬071118 小时前
opencv mat 统计小于0的个数
人工智能·opencv·计算机视觉
明洞日记21 小时前
【VTK手册034】 vtkGeometryFilter 深度解析:高性能几何提取与转换专家
c++·图像处理·算法·ai·vtk·图形渲染
Jerryhut1 天前
背景建模实战:从帧差法到混合高斯模型的 OpenCV 实现
人工智能·opencv·计算机视觉
木卫二号Coding1 天前
第七十三篇-ComfyUI+V100-32G+Flux Schnell+Lora
图像处理·python
乞丐哥1 天前
乞丐哥的私房菜(Ubuntu OpenCV篇——Image Processing 节 之 Out-of-focus Deblur Filter 失焦去模糊滤波器 滤镜)
c++·图像处理·opencv·ubuntu·计算机视觉
厨 神1 天前
opencv学习
人工智能·opencv·学习
MF_AI2 天前
大型烟雾火灾检测识别数据集:25w+图像,2类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉
皮肤科大白2 天前
图像处理的 Python库
图像处理·人工智能·python
s09071362 天前
连通域标记:从原理到数学公式全解析
图像处理·算法·fpga开发·连通域标记
s09071362 天前
FPGA加速:Harris角点检测全解析
图像处理·算法·fpga开发·角点检测