OpenCV图像处理-视频分割静态背景-MOG/MOG2/GMG

视频分割背景

1.概念介绍

视频背景扣除原理:视频是一组连续的帧(一幅幅图组成),帧与帧之间关系密切(GOP/group of picture),在GOP中,背景几乎是不变的,变的永远是前景。

  • 背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术
  • 顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。

2. 函数介绍

MOG算法

cv2.createBackgroundSubtractorMOG(history, nmixtures, backgroundRatio, noiseSigma)

history:用于训练背景的帧数,默认为200帧

nmixtures:高斯范围值,默认为5;5*5的卷积核

backgroindRatio:背景比率,默认0.7

noiseSigma:默认0,自动降噪

代码示例:

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
mog = cv2.bgsegm.createBackgroundSubtractorMOG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    cv2.imshow('text', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

MOG2算法

MOG2增加的是对阴影的识别,但是会产生更多的噪点。

cv2.createBackgroundSubtractorMOG2()

参数同MOG一样

detectShadows:是否检测阴影,默认为True

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
mog = cv2.createBackgroundSubtractorMOG2()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

GMG算法

GMG算法的抗噪性更强,但是该算法有缓存初始帧,即缓存的帧数不显示。

算法:cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=120)

initializationFrames:默认帧数为120,需要吃掉120帧,对之后的帧进行优化。

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
# mog = cv2.createBackgroundSubtractorMOG2()
gmg = cv2.bgsegm.createBackgroundSubtractorGMG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = gmg.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

原视频获取链接

以上就是视频分割的基本使用方式,详情烦请参考相关论文和相关文档。

相关推荐
Ai173163915796 小时前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
AndrewHZ20 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
深蓝海拓1 天前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
滨HI01 天前
C++ opencv简化轮廓
开发语言·c++·opencv
Coding茶水间1 天前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
Dev7z2 天前
基于Matlab传统图像处理的风景图像多风格转换与优化
图像处理·matlab·风景
Dev7z3 天前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能
AndrewHZ3 天前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
AndrewHZ3 天前
【图像处理基石】图像处理的基础理论体系介绍
图像处理·人工智能·算法·计算机视觉·cv·理论体系
技术支持者python,php3 天前
训练模型,物体识别(opencv)
人工智能·opencv·计算机视觉