OpenCV图像处理-视频分割静态背景-MOG/MOG2/GMG

视频分割背景

1.概念介绍

视频背景扣除原理:视频是一组连续的帧(一幅幅图组成),帧与帧之间关系密切(GOP/group of picture),在GOP中,背景几乎是不变的,变的永远是前景。

  • 背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术
  • 顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。

2. 函数介绍

MOG算法

cv2.createBackgroundSubtractorMOG(history, nmixtures, backgroundRatio, noiseSigma)

history:用于训练背景的帧数,默认为200帧

nmixtures:高斯范围值,默认为5;5*5的卷积核

backgroindRatio:背景比率,默认0.7

noiseSigma:默认0,自动降噪

代码示例:

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
mog = cv2.bgsegm.createBackgroundSubtractorMOG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    cv2.imshow('text', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

MOG2算法

MOG2增加的是对阴影的识别,但是会产生更多的噪点。

cv2.createBackgroundSubtractorMOG2()

参数同MOG一样

detectShadows:是否检测阴影,默认为True

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
mog = cv2.createBackgroundSubtractorMOG2()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = mog.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

GMG算法

GMG算法的抗噪性更强,但是该算法有缓存初始帧,即缓存的帧数不显示。

算法:cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=120)

initializationFrames:默认帧数为120,需要吃掉120帧,对之后的帧进行优化。

python 复制代码
import cv2
import numpy as np

# 读取视频帧
cap = cv2.VideoCapture('./video/vtest.avi')
# mog = cv2.bgsegm.createBackgroundSubtractorMOG()
# mog = cv2.createBackgroundSubtractorMOG2()
gmg = cv2.bgsegm.createBackgroundSubtractorGMG()

while True:
    ret, frame = cap.read()
    if ret == False:
        exit(1)
    fgmask = gmg.apply(frame)
    #cv2.imshow('MOG', fgmask)
    cv2.imshow('MOG2', fgmask)
    k = cv2.waitKey(10) & 0xff
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

原视频获取链接

以上就是视频分割的基本使用方式,详情烦请参考相关论文和相关文档。

相关推荐
AI即插即用2 小时前
超分辨率重建(论文精读) | CVPR 2025 LSRNA:利用隐空间超分与噪声对齐,打破扩散模型生成 4K 图像的效率瓶颈
图像处理·人工智能·深度学习·计算机视觉·视觉检测·超分辨率重建
saoys3 小时前
Opencv 学习笔记:循环读取文件夹中图片并动态展示
笔记·opencv·学习
碎碎思4 小时前
使用 Arm Cortex-M1 实现低成本图像处理系统 的 FPGA 方案详解
arm开发·图像处理·人工智能·fpga开发
xinxiangwangzhi_4 小时前
多视图几何--密集匹配SURE(tsgm)
图像处理·计算机视觉
子午4 小时前
【2026原创】鱼类识别系统~Python+深度学习+CNN卷积神经网络算法+模型训练+图像识别
图像处理·python·深度学习·cnn
格林威5 小时前
Baumer相机最新SDK开发_下载_封装
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·halcon
sali-tec5 小时前
C# 基于OpenCv的视觉工作流-章12-双边滤波
图像处理·人工智能·opencv·算法·计算机视觉
AI即插即用6 小时前
超分辨率重建(代码实践) | CVPR 2025 LSRNA:利用隐空间超分与噪声对齐,打破扩散模型生成 4K 图像的效率瓶颈
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建