C++利用pcl实现点云DBSCAN聚类

一、DBSCAN算法原理:

(1)DBSCAN通过检查数据集中每点的Eps邻域来搜索簇,如果点p的Eps邻域包含的点多于MinPts个,则创建一个以p为核心对象的簇;

(2)然后,DBSCAN迭代地聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;

(3)当没有新的点添加到任何簇时,该过程结束。

简单理解:在每个点的Eps邻域内拥有点的个数多于MinPts,那么认为p为核心对象簇的一员。即dbscan认为密度可达的点即为一个簇,这也是dbscan聚类的核心思想。根据密度可达的定义,在聚类过程中,除了第一个和最后一个点之外(可以为核心对象或者边界对象),其余点必须是核心对象才可以。

二、优缺点

优点:

(1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类;

(2)与K-MEANS比较起来,不需要输入要划分的聚类个数;

(3)聚类簇的形状没有偏倚;

(4)可以在需要时输入过滤噪声的参数。

缺点:

(1)当数据量增大时,要求较大的内存支持I/O消耗也很大;

(2)当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难。

(3)算法聚类效果依赖与距离公式选取,实际应用中常用欧式距离,对于高维数据,存在"维数灾难"。

三、代码实现

cpp 复制代码
// 依赖项:pcl1.9.1
//时间:2021.06.25
//功能:实现点云dbscan聚类
//
#pragma once

#include <iostream>
#include<string>
#include<vector>

#include<pcl/io/pcd_io.h>
#include<pcl/point_cloud.h>
#include<pcl/point_types.h>
#include<pcl/kdtree/kdtree_flann.h>
#include<pcl/visualization/cloud_viewer.h>

typedef pcl::PointXYZ pointT;
typedef pcl::PointCloud<pointT> cloud;

//const cloud::Ptr& cloud_in,输入点云
//std::vector<std::vector<int>> &clusters_index, 索引
//const double& r, Eps邻域半径,单位:m
//const int& size,Eps邻域包含的点的最小个数MinPts
bool dbscan(const cloud::Ptr& cloud_in, std::vector<std::vector<int>> &clusters_index, const double& r, const int& size)
{
    if (!cloud_in->size())
        return false;
    //LOG()
    pcl::KdTreeFLANN<pointT> tree;
    tree.setInputCloud(cloud_in);
    std::vector<bool> cloud_processed(cloud_in->size(), false);

    for (size_t i = 0; i < cloud_in->points.size(); ++i)
    {
        if (cloud_processed[i])
        {
            continue;
        }

        std::vector<int>seed_queue;
        //检查近邻数是否大于给定的size(判断是否是核心对象)
        std::vector<int> indices_cloud;
        std::vector<float> dists_cloud;
        if (tree.radiusSearch(cloud_in->points[i], r, indices_cloud, dists_cloud) >= size)
        {
            seed_queue.push_back(i);
            cloud_processed[i] = true;
        }
        else
        {
            //cloud_processed[i] = true;
            continue;
        }

        int seed_index = 0;
        while (seed_index < seed_queue.size())
        {
            std::vector<int> indices;
            std::vector<float> dists;
            if (tree.radiusSearch(cloud_in->points[seed_queue[seed_index]], r, indices, dists) < size)//函数返回值为近邻数量
            {
                //cloud_processed[i] = true;//不满足<size可能是边界点,也可能是簇的一部分,不能标记为已处理
                ++seed_index;
                continue;
            }
            for (size_t j = 0; j < indices.size(); ++j)
            {
                if (cloud_processed[indices[j]])
                {
                    continue;
                }
                seed_queue.push_back(indices[j]);
                cloud_processed[indices[j]] = true;
            }
            ++seed_index;                
        }
        clusters_index.push_back(seed_queue);               
      
    }
   // std::cout << clusters_index.size() << std::endl;

    if (clusters_index.size())
        return true;
    else
        return false;
}

int main()
{
    cloud::Ptr cloud_in(new cloud);
    std::vector<std::vector<int>> clusters_index;
    pcl::io::loadPCDFile<pcl::PointXYZ>("2.pcd", *cloud_in);
    dbscan(cloud_in, clusters_index, 0.1, 10);
    std::cout << clusters_index.size() << std::endl;
    pcl::PointCloud<pcl::PointXYZI> visual_cloud;
    visual_cloud.width = cloud_in->size();
    visual_cloud.height = 1;
    visual_cloud.resize(cloud_in->size());
    for (size_t i = 0; i < clusters_index.size(); ++i)
    {
        for (size_t j = 0; j < clusters_index[i].size(); ++j)
        {
            visual_cloud.points[clusters_index[i][j]].x = cloud_in->points[clusters_index[i][j]].x;
            visual_cloud.points[clusters_index[i][j]].y = cloud_in->points[clusters_index[i][j]].y;
            visual_cloud.points[clusters_index[i][j]].z = cloud_in->points[clusters_index[i][j]].z;
            visual_cloud.points[clusters_index[i][j]].intensity = 20*(i+100);
            //std::cout << clusters_index[i][j] << std::endl;

        }
       // std::cout << clusters_index[i].size() << std::endl;

    }
    
    pcl::visualization::CloudViewer viewer("DBSCAN cloud viewer.");
    viewer.showCloud(visual_cloud.makeShared());
    while (!viewer.wasStopped())
    {
    }
    pcl::io::savePCDFile("dbscan.pcd", visual_cloud,true);
    std::cout << "Hello World!\n";
}

参考:

1.https://blog.csdn.net/baidu_38172402/article/details/81915112

2.https://blog.csdn.net/xinxiangwangzhi_/article/details/118212814

相关推荐
Prejudices5 分钟前
C++如何调用Python脚本
开发语言·c++·python
单音GG8 分钟前
推荐一个基于协程的C++(lua)游戏服务器
服务器·c++·游戏·lua
qing_04060324 分钟前
C++——多态
开发语言·c++·多态
孙同学_24 分钟前
【C++】—掌握STL vector 类:“Vector简介:动态数组的高效应用”
开发语言·c++
charlie1145141911 小时前
Qt Event事件系统小探2
c++·qt·拖放·事件系统
iiiiiankor1 小时前
C/C++内存管理 | new的机制 | 重载自己的operator new
java·c语言·c++
小辛学西嘎嘎1 小时前
C/C++精品项目之图床共享云存储(3):网络缓冲区类和main
c语言·开发语言·c++
c语言鹌鹑蛋2 小时前
C++初阶 --- 类和对象(1)
开发语言·c++
Jack黄从零学c++2 小时前
opencv(c++)图像的灰度转换
c++·人工智能·opencv
heilai42 小时前
workerman的安装与使用
c++·websocket·http·php·phpstorm·visual studio code