1、传统锁回顾(Jvm本地锁,MySQL悲观锁、乐观锁)

目录

1.1 从减库存聊起

多线程并发安全问题最典型的代表就是超卖现象

库存在并发量较大情况下很容易发生超卖现象,一旦发生超卖现象,就会出现多成交了订单而发不了货的情况。

场景:商品S库存余量为5时,用户A和B同时来购买一个商品,此时查询库存数都为5,库存充足则开始减库存

用户A:update db_stock set stock = stock - 1 where id = 1

用户B:update db_stock set stock = stock - 1 where id = 1

并发情况下,更新后的结果可能是4,而实际的最终库存量应该是3才对 !!

1.2 环境准备

建表语句:

sql 复制代码
CREATE TABLE `db_stock` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `product_code` varchar(255) DEFAULT NULL COMMENT '商品编号',
  `stock_code` varchar(255) DEFAULT NULL COMMENT '仓库编号',
  `count` int(11) DEFAULT NULL COMMENT '库存量',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

表中数据如下:

创建分布式锁demo工程:

目录结构

pom.xml

xml 复制代码
<dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.46</version>
        </dependency>
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.4.3.4</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

application.yml配置文件:

java 复制代码
server.port=10010
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://192.168.239.11:3306/atguigu_distributed_lock
spring.datasource.username=root
spring.datasource.password=houchen

DistributedLockApplication启动类:

java 复制代码
@SpringBootApplication
@MapperScan("com.atguigu.distributed.lock.mapper")
public class DistributedLockApplication {

    public static void main(String[] args) {
        SpringApplication.run(DistributedLockApplication.class, args);
    }

}

Stock实体类:

java 复制代码
@Data
@TableName("db_stock")
public class Stock {

    @TableId
    private Long id;

    private String productCode;

    private String stockCode;

    private Integer count;
}

StockMapper接口:

java 复制代码
public interface StockMapper extends BaseMapper<Stock> {
}

1.3 简单实现减库存

java 复制代码
@RestController
public class StockController {

    @Autowired
    private StockService stockService;

    @GetMapping("stock/deduct")
    public String deduct(){
        this.stockService.deduct();
        return "hello stock deduct!!";
    }

}

@Service
public class StockService {

    @Autowired
    private StockMapper stockMapper;

    public void  deduct(){
        // 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);
        // 再减库存
        if (stock != null && stock.getCount() > 0){
            stock.setCount(stock.getCount() - 1);
            this.stockMapper.updateById(stock);
        }
    }
}

测试:

查看数据库:

在浏览器中一个一个访问时,每访问一次,库存量减1,没有任何问题。

1.4 演示超卖现象

使用jmeter压力测试工具,高并发下压测一下,添加线程组:并发100循环50次,即5000次请求。

启动测试,查看压力测试报告:

  • Label 取样器别名,如果勾选Include group name ,则会添加线程组的名称作为前缀
  • Samples 取样器运行次数

  • Average 请求(事务)的平均响应时间
  • Median 中位数
  • 90% Line 90%用户响应时间
  • 95% Line 90%用户响应时间
  • 99% Line 90%用户响应时间
  • Min 最小响应时间
  • Max 最大响应时间
  • Error 错误率
  • Throughput 吞吐率
  • Received KB/sec 每秒收到的千字节
  • Sent KB/sec 每秒收到的千字节

查看mysql数据库剩余库存数:还有4818

1.5 jvm锁

使用jvm锁(synchronized关键字或者ReetrantLock)试试:

java 复制代码
 /**
     *  使用jvm锁来解决超卖问题
     */
    public synchronized void deduct() {
        // 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);
        // 再减库存
        if (stock != null && stock.getCount() > 0) {
            stock.setCount(stock.getCount() - 1);
            this.stockMapper.updateById(stock);
        }
    }

重启tomcat服务,再次使用jmeter压力测试,效果如下:

可以看到,加锁之后,吞吐量减少了一倍多!

查看mysql数据库:

并没有发生超卖现象,完美解决。

原理

添加synchronized关键字之后,同一时刻只有一个请求能够获取到锁,并减库存。此时,所有请求只会one-by-one执行下去,也就不会发生超卖现象

1.6 三种情况导致Jvm本地锁失效

1、多例模式下,Jvm本地锁失效

原理:StockService有多个对象,不同的对象持有不同的锁,所以还是会有多个线程进入到 临界区

演示:

java 复制代码
@Service
@Scope(value = "prototype",proxyMode = ScopedProxyMode.TARGET_CLASS)
public class StockService {

    @Autowired
    private StockMapper stockMapper;

    /**
     *  使用jvm锁来解决超卖问题
     */
    public synchronized void deduct() {
        // 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);
        // 再减库存
        if (stock != null && stock.getCount() > 0) {
            stock.setCount(stock.getCount() - 1);
            this.stockMapper.updateById(stock);
        }
    }
}

重启tomcat服务,再次使用jmeter压力测试,查看数据库,发现库存确实没有减到 0 ,发生超卖

2、Spring的事务导致Jvm本地锁失效

在加锁的地方加上 @Transactional 注解

java 复制代码
 @Transactional
    public synchronized void deduct() {
        // 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);
        // 再减库存
        if (stock != null && stock.getCount() > 0) {
            stock.setCount(stock.getCount() - 1);
            this.stockMapper.updateById(stock);
        }
    }

重启tomcat服务,再次使用jmeter压力测试,查看数据库,发现库存确实没有减到 0 ,发生超卖

造成超卖的原因:

Spring事务默认的隔离级别是可重复读

解决办法

扩大锁的范围,将开启事务,提交事务也包括在锁的代码块中

java 复制代码
 @GetMapping("stock/deduct")
    public String deduct(){
        synchronized (this) {
            this.stockService.deduct();
        }
        return "hello stock deduct!!";
    }

3、集群部署导致Jvm本地锁失效

使用jvm锁在单工程单服务情况下确实没有问题,但是在集群情况下会怎样?

接下启动多个服务并使用nginx负载均衡

1)启动两个服务(端口号分别10010 10086),如下:

2)配置nginx 负载均衡

java 复制代码
#user  nobody;
worker_processes  1;

#error_log  logs/error.log;
#error_log  logs/error.log  notice;
#error_log  logs/error.log  info;

#pid        logs/nginx.pid;


events {
    worker_connections  1024;
}


http {
    include       mime.types;
    default_type  application/octet-stream;
    sendfile        on;
	
	upstream distributed {
		server localhost:10010;
		server localhost:10086;
	}

    server {
        listen       80;
        server_name  localhost;
		location / {
			proxy_pass http://distributed;
		}
    }
}

3)在post中测试:http://localhost/stock/deduct (其中80是nginx的监听端口)

请求正常,说明nginx负载均衡起作用了

4) Jmeter压力测试

注意

查看数据库,库存不为0,表示多服务时,Jvm锁失效

5) 原因

每个服务都有自己的本地锁,所以无法锁住临界区,导致多线程的安全问题

1.7 mysql锁演示

除了使用jvm锁之外,还可以使用mysql自带的锁:悲观锁 或者 乐观锁

1.7.1、一个sql

sql 复制代码
update db_stock set count = count - 1 where product_code = '1001' and count >= #{count}
java 复制代码
public void deduct() {
        this.stockMapper.updateStock("1001", 1);
    }
    
 public interface StockMapper extends BaseMapper<Stock> {
    @Update("update db_stock set count = count - #{count} where product_code = #{productCode} and count >= #{count}")
    int updateStock(@Param("productCode") String productCode, @Param("count") Integer count);
}

这种方式可以解决上述Jvm锁失效的三个问题

缺点:

1、确定好锁范围

当使用的是表锁时,会导致系统的吞吐量直线下降

​ 什么情况下会使用行级锁

​ 1)锁的查询或者更新条件必须是索引字段

​ 2) 查询或者更新条件必须是具体值

2、一件商品多个仓库问题无法处理

3、无法记录仓库变化前后的状态

1.7.2、悲观锁

sql 复制代码
SELECT ... FOR UPDATE                     (悲观锁)

代码实现

改造StockService: 添加事务注解,去掉synchronized关键词

java 复制代码
@Transactional
    public void deduct() {
        Stock stocks = this.stockMapper.queryStockForUpdate("1001");
        if (stocks != null && stocks.getCount() > 0) {
            stocks.setCount(stocks.getCount() - 1);
            this.stockMapper.updateById(stocks);
        }
    }

在StockeMapper中定义selectStockForUpdate方法:

java 复制代码
public interface StockMapper extends BaseMapper<Stock> {


    @Update("update db_stock set count = count - #{count} where product_code = #{productCode} and count >= #{count}")
    int updateStock(@Param("productCode") String productCode, @Param("count") Integer count);

    @Select("select * from db_stock where product_code = #{productCode} for update")
    Stock queryStockForUpdate(@Param("productCode") String productCode);
}

压力测试

注意:测试之前,需要把库存量改成5000。压测数据如下:比jvm锁性能高很多

mysql数据库存:

【注意】使用MySQL乐观锁时,也需要注意锁的粒度,尽量使用行级锁,否则系统吞吐量会降低

1.7.3、乐观锁

乐观锁是相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则重试。

使用数据版本(Version)记录机制实现,这是乐观锁最常用的实现 方式。一般是通过为数据库表增加一个数字类型的 "version" 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新。

给db_stock表添加version字段:

改造 StockService

java 复制代码
  /**
     *  使用MySQL乐观锁来解决库存超卖问题
     */
    public void deduct() {
        // 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);
        // 再减库存
        if (stock != null && stock.getCount() > 0){
            // 获取版本号
            Long version = stock.getVersion();

            stock.setCount(stock.getCount() - 1);
            // 每次更新 版本号 + 1
            stock.setVersion(stock.getVersion() + 1);
            // 更新之前先判断是否是之前查询的那个版本,如果不是重试
            if (this.stockMapper.update(stock, new UpdateWrapper<Stock>().eq("id", stock.getId()).eq("version", version)) == 0) {
                deduct();
            }
        }
    }

重启后使用jmeter压力测试工具结果如下:

并发度比较低,说明乐观锁在并发量越大的情况下,性能越低(因为需要大量的重试);并发量越小,性能越高。

乐观锁存在的问题

  • 高并发情况下,性能较低
  • ABA问题
  • 读写分离的情况下,可能会导致乐观锁不可靠

1.7.4、mysql锁总结

性能:一个sql > 悲观锁 > jvm锁 > 乐观锁

  • 如果追求极致性能、业务场景简单并且不需要记录数据前后变化的情况下。

​ 优先选择:一个sql

  • 如果写并发量较低(多读),争抢不是很激烈的情况下优先选择:乐观锁

  • 如果写并发量较高,一般会经常冲突,此时选择乐观锁的话,会导致业务代码不间断的重试。

​ 优先选择:mysql悲观锁

  • 不推荐jvm本地锁。

1.8 redis乐观锁

1.8.1 引入redis

见我的博客 https://blog.csdn.net/hc1285653662/article/details/127564372 中的SpringDataRedis客户端

改造StockService

java 复制代码
  /**
     * 为了提高请求响应的速度,将库存放在redis中进行操作
     */
    public void deduct() {
        // 先查询库存是否充足
        String stockStr = redisTemplate.opsForValue().get("stock:" + "1001");
        Long stock = Long.parseLong(stockStr);
        if (stock != null && stock > 0) {
            redisTemplate.opsForValue().set("stock:" + "1001", String.valueOf(stock - 1));
        }
    }

演示redis库存超卖

设置redis库存为 5000

jmeter启动测试,可以看到并发比无锁时候的mysql库存要高

查询redis库存,发现剩余库存不为0,所以发生超卖现象

1.8.2 redis乐观锁原理

使用watch命令监视某个key,如果在监视的过程中该key被某个客户端修改后,那么自身对于key的修改将会失败

1.8.3 redis乐观锁解决超卖问题

改造StockService

java 复制代码
/**
     * 为了提高请求响应的速度,将库存放在redis中进行操作
     */
    public void deduct() {
        // 监听 stock:1001
        redisTemplate.execute(new SessionCallback<Object>() {
            @Override
            public Object execute(RedisOperations operations) throws DataAccessException {
                operations.watch("stock:" + "1001");
                String stockStr = (String) operations.opsForValue().get("stock:" + "1001");
                Long stock = Long.parseLong(stockStr);
                if (stock != null && stock > 0) {
                    operations.multi();
                    operations.opsForValue().set("stock:" + "1001", String.valueOf(stock - 1));
                    List exec = operations.exec();
                    // 如果减库存失败,代表key别其他客户端修改了,则进行重试
                    if (exec == null || exec.size() == 0) {
                        try {
                            Thread.sleep(50);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        deduct();
                    }
                    return exec;
                }
                return null;
            }
        });
    }

查看测试结果:发现并发很低(可能因为我redis部署在阿里云上的docker里,网络开销导致并发很低),但是确实解决超卖问题

1.8.4 redis乐观锁的缺点

  • 性能问题
相关推荐
何包蛋H6 天前
分布式锁(防止同时操作同一条数据)实现分析
java·开发语言·分布式锁
珍珠是蚌的眼泪11 天前
Zookeeper
分布式·zookeeper·分布式锁·持久化节点·临时节点
dpc2714912 天前
Zookeeper分布式锁实现
zookeeper·分布式锁
linmoo198616 天前
java脚手架系列10-统一缓存、分布式锁
java·redis·分布式·缓存·分布式锁·redisserializer
huisheng_qaq1 个月前
【redis-05】redis保证和mysql数据一致性
数据库·redis·mysql·分布式锁·延迟双删·数据一致性
写hello world都有bug2 个月前
谈谈Redisson分布式锁的底层实现原理
redis·多线程·分布式锁
lazy★boy2 个月前
Redisson实现分布式锁
分布式锁·redisson
鹿又笑2 个月前
基于 Redis 的分布式锁实现原理及步骤
数据库·redis·分布式·分布式锁·
碎像2 个月前
分布式锁(Redis的setnx、Redisson)
java·分布式锁
排骨瘦肉丁2 个月前
SpringBoot中@SchedulerLock注解实现定时任务中分布式锁的使用
spring boot·分布式锁·定时任务