3分钟带你了解Python中的生成器和迭代器,离成为大佬又近了一步

3分钟带你玩转Python,用不了多久你也可以成为大佬

生成器(Generators)和迭代器(Iterators)是 Python 中用于处理序列数据的强大工具。它们可以帮助您以更高效和内存友好的方式处理大型数据集,同时提供了更方便的方式来访问和处理数据。它们都可以用于逐个处理序列中的元素,但它们在实现和工作方式上有所不同。

迭代器(Iterators):

迭代器是一个实现了迭代协议的对象,它可以在循环中逐个返回值,而不必将所有值一次性加载到内存中。迭代器具有两个主要方法:

1.__iter__() 方法:返回迭代器对象本身。

2.__next__() 方法:返回序列中的下一个元素。如果没有元素可以返回,会引发 StopIteration 异常。

迭代器通常用于处理大型数据集,使得只有在需要的时候才会从数据源加载数据。

举个🌰说明一下:

Python迭代器示例 复制代码
class MyIterator:
    def __init__(self, max_value):
        self.max_value = max_value
        self.current = 0

    def __iter__(self):
        return self

    def __next__(self):
        if self.current < self.max_value:
            value = self.current
            self.current += 1
            return value
        else:
            raise StopIteration

my_iterator = MyIterator(6)
for num in my_iterator:
    print(num)

运行结果如下:

生成器(Generators):

生成器是一种特殊的迭代器,它使用函数来产生序列中的元素。生成器函数使用 yield 关键字来暂停函数执行并产生一个值,然后在需要下一个值时再次恢复执行。这允许您按需生成值,而不必一次性将所有值加载到内存中。生成器在处理大型数据集时非常高效。

举个🌰说明一下:

Python生成器示例 复制代码
def my_generator(max_value):
    current = 0
    while current < max_value:
        yield current
        current += 1

gen = my_generator(6)
for num in gen:
    print(num)

代码说明:

在上面的生成器示例中,my_generator 函数使用了 yield 关键字来暂停函数的执行并生成值。每次循环迭代时,函数会从上次 yield 暂停的位置恢复执行,并继续执行直到下一个 yield

运行结果如下:

总结

生成器和迭代器是 Python 中处理序列数据的重要工具,它们在处理大数据集时可以提供显著的性能和内存优势。通过使用生成器和迭代器,您可以更加高效地处理数据,减少内存使用,并提高代码的可读性。

学习与反思

为什么我们要用迭代器和生成器,代码写了那么多不就是一个for循环的事情吗?

迭代器和生成器在处理序列数据时有许多优点,使得它比普通的 for 循环更加灵活和高效。以下是一些迭代器的优点以及与普通 for 循环的比较:

优点:

1.节省内存:迭代器一次只返回一个元素,而不会一次性将整个序列加载到内存中。这对于大型数据集非常有用,可以有效地减少内存占用。

2.懒惰求值(Lazy Evaluation) :生成器迭代器使用惰性求值,只在需要时生成值。这意味着您可以在不需要全部数据的情况下开始迭代,从而提高性能和效率。

3.支持无限序列:生成器可以用于表示无限序列,因为它们按需生成值,而不需要在内存中存储整个序列。

4.可复用性和模块化:通过封装生成器逻辑,您可以创建可重用的、模块化的生成器函数,以便在不同的上下文中使用。

缺点:

1.速度相对较慢 :与直接使用列表的 for 循环相比,迭代器可能会稍微慢一些,因为它们需要在每次迭代时执行一些附加操作。

2.不适合索引访问:由于迭代器是按需生成值的,所以无法通过索引访问特定位置的元素,需要从头开始迭代。

3.无法修改序列:迭代器一般是只读的,不能用于修改序列中的元素。

适用场景:

1.当您需要处理大型数据集时,迭代器可以节省大量内存,并提高性能。

2.当您需要按需生成值,或者处理无限序列时,生成器是一个非常好的选择。

3.当您需要创建可复用的、模块化的代码时,生成器函数能够提供更好的组织和抽象。

我该怎么选:

使用迭代器的主要优点是节省内存、支持惰性求值和无限序列,同时也提高了代码的可复用性和模块化。然而,对于需要快速索引和修改的情况,使用普通的 for 循环可能更为方便。在选择使用迭代器还是普通循环时,您应该根据具体的情况和需求进行权衡。

相关推荐
面向Google编程21 分钟前
从零学习Kafka:数据存储
后端·kafka
冷雨夜中漫步40 分钟前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴1 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再1 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
易安说AI1 小时前
Claude Opus 4.6 凌晨发布,我体验了一整晚,说说真实感受。
后端
易安说AI1 小时前
Ralph Loop 让Claude无止尽干活的牛马...
前端·后端
易安说AI1 小时前
用 Claude Code 远程分析生产日志,追踪 Claude Max 账户被封原因
后端
颜酱2 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
喵手3 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934733 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python