BLIP2

BLIP2的任务是基于已有的固定参数的图像encoder和语言大模型(LLM)搭建一个具有图像理解能力的图文模型,输入是图像和文本,输出是文本。

BLIP2基于Q-Former结构,如下图所示。Q-Former包含图像transformer和文本transformer两个transformer。两个transformer的self-attention layer是共享的。图像transformer的输入是固定数量的可学习的query embedding。query embedding先通过self-attention和文本交互,再并通过cross-attention和图像特征交互。Q-Former的cross-attention的参数随机初始化,其他参数用bert的参数初始化。Q-Former的优势是可以从图像encoder中提取出固定长度的特征。

BLIP2的训练分为两步:

  1. 从固定参数的图像encoder学习视觉文本编码,有Image-Text Contrastive Learning (ITC)、Image-grounded Text Generation (ITG) 、Image-Text Matching (ITM)三个训练目标。
  2. 从固定参数的LLM学习理解图片生成文本。通过FC层连接Q-Former将queries的映射到和文本token相同维度,拼接在文本前面。

图像encoder选择了CLIP的ViT-L/14和EVA-CLIP的ViT-G/14。LLM选择了OPT和FlanT5。

训练数据包含129M幅图片,来自COCO、Visual Genome、CC3M、 CC12M、SBU、 LAION400M。互联网图片使用CapFilt方法生成文本描述。

相关推荐
烟锁池塘柳05 分钟前
【计算机视觉】三种图像质量评价指标详解:PSNR、SSIM与SAM
人工智能·深度学习·计算机视觉
小森776731 分钟前
(六)机器学习---聚类与K-means
人工智能·机器学习·数据挖掘·scikit-learn·kmeans·聚类
RockLiu@8051 小时前
探索PyTorch中的空间与通道双重注意力机制:实现concise的scSE模块
人工智能·pytorch·python
进取星辰1 小时前
PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)之扩展
人工智能·pytorch·深度学习
极客智谷1 小时前
Spring AI应用系列——基于ARK实现多模态模型应用
人工智能·后端
思悟小卒2 小时前
可以自我反思的检索增强生成
人工智能
学点技术儿2 小时前
torch.cuda.empty_cache()使用场景
人工智能
孔令飞2 小时前
如何在 Go 中实现各种类型的链表?
人工智能·云原生·go
XCristiano2 小时前
LLM魔法:让非结构化文本变身知识图谱
人工智能
redparrot20082 小时前
LeNet5 神经网络的参数解析和图片尺寸解析
人工智能·深度学习·神经网络