BLIP2

BLIP2的任务是基于已有的固定参数的图像encoder和语言大模型(LLM)搭建一个具有图像理解能力的图文模型,输入是图像和文本,输出是文本。

BLIP2基于Q-Former结构,如下图所示。Q-Former包含图像transformer和文本transformer两个transformer。两个transformer的self-attention layer是共享的。图像transformer的输入是固定数量的可学习的query embedding。query embedding先通过self-attention和文本交互,再并通过cross-attention和图像特征交互。Q-Former的cross-attention的参数随机初始化,其他参数用bert的参数初始化。Q-Former的优势是可以从图像encoder中提取出固定长度的特征。

BLIP2的训练分为两步:

  1. 从固定参数的图像encoder学习视觉文本编码,有Image-Text Contrastive Learning (ITC)、Image-grounded Text Generation (ITG) 、Image-Text Matching (ITM)三个训练目标。
  2. 从固定参数的LLM学习理解图片生成文本。通过FC层连接Q-Former将queries的映射到和文本token相同维度,拼接在文本前面。

图像encoder选择了CLIP的ViT-L/14和EVA-CLIP的ViT-G/14。LLM选择了OPT和FlanT5。

训练数据包含129M幅图片,来自COCO、Visual Genome、CC3M、 CC12M、SBU、 LAION400M。互联网图片使用CapFilt方法生成文本描述。

相关推荐
YYXZZ。。42 分钟前
PyTorch——搭建小实战和Sequential的使用(7)
人工智能·pytorch·python
四川兔兔1 小时前
pytorch 与 张量的处理
人工智能·pytorch·python
AI蜗牛之家4 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上4 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
YunTM5 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
舒一笑6 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq7 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖7 小时前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer7 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor8 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc