BLIP2

BLIP2的任务是基于已有的固定参数的图像encoder和语言大模型(LLM)搭建一个具有图像理解能力的图文模型,输入是图像和文本,输出是文本。

BLIP2基于Q-Former结构,如下图所示。Q-Former包含图像transformer和文本transformer两个transformer。两个transformer的self-attention layer是共享的。图像transformer的输入是固定数量的可学习的query embedding。query embedding先通过self-attention和文本交互,再并通过cross-attention和图像特征交互。Q-Former的cross-attention的参数随机初始化,其他参数用bert的参数初始化。Q-Former的优势是可以从图像encoder中提取出固定长度的特征。

BLIP2的训练分为两步:

  1. 从固定参数的图像encoder学习视觉文本编码,有Image-Text Contrastive Learning (ITC)、Image-grounded Text Generation (ITG) 、Image-Text Matching (ITM)三个训练目标。
  2. 从固定参数的LLM学习理解图片生成文本。通过FC层连接Q-Former将queries的映射到和文本token相同维度,拼接在文本前面。

图像encoder选择了CLIP的ViT-L/14和EVA-CLIP的ViT-G/14。LLM选择了OPT和FlanT5。

训练数据包含129M幅图片,来自COCO、Visual Genome、CC3M、 CC12M、SBU、 LAION400M。互联网图片使用CapFilt方法生成文本描述。

相关推荐
Joy T18 分钟前
海南蓝碳:生态财富与科技驱动的新未来
大数据·人工智能·红树林·海南省·生态区建设
N0nename44 分钟前
TR3--Transformer之pytorch复现
人工智能·pytorch·python
北京耐用通信1 小时前
电力自动化新突破:Modbus如何变身Profinet?智能仪表连接的终极解决方案
人工智能·物联网·网络安全·自动化·信息与通信
golang学习记2 小时前
VSCode Copilot 编码智能体实战指南:让 AI 自主开发,你只负责 Review!
人工智能
渡我白衣2 小时前
深度学习进阶(八)——AI 操作系统的雏形:AgentOS、Devin 与多智能体协作
人工智能·深度学习
万岳软件开发小城2 小时前
AI数字人系统源码+AI数字人小程序开发:2025年热门AI项目
人工智能·开源·软件开发·app开发·ai数字人小程序·ai数字人系统源码
xiangzhihong82 小时前
Spring Boot集成SSE实现AI对话的流式响应
人工智能·spring boot
羊羊小栈2 小时前
基于知识图谱(Neo4j)和大语言模型(LLM)的图检索增强(GraphRAG)的台风灾害知识问答系统(vue+flask+AI算法)
人工智能·毕业设计·知识图谱·创业创新·neo4j·毕设·大作业
+wacyltd大模型备案算法备案2 小时前
【大模型备案】全国有439个大模型通过生成式人工智能大模型备案!
人工智能
学不会就看2 小时前
PyTorch 张量学习
人工智能·pytorch·学习