[迁移学习]领域泛化

一、概念

相较于领域适应领域泛化(Domain generalization)最显著的区别在于训练过程中不能访问测试集。

领域泛化的损失函数一般可以描述为以下形式:

该式分为三项:第一项表示各训练集权重 的线性组合,其中π为使该项最小的系数;第二项表示域间距离 ,其中表示目标域和源域之间最小的距离、表示源域之间两两组合的最大距离;第三项表示理想风险(ideal joint risk),一般情况下可以忽略。

二、分类

1.数据操作(Data manipulation)

该方法体现在对数据集的操作,主要分为数据增强 (Data augmentation)和数据生成(Data generation)

其中数据增强 主要的方式是对图像进行尺寸、颜色、亮度、对比度的调整,旋转、添加噪声等操作。可由其增强的方向分为:相关数据增强对抗数据增强

数据生成主要有3种方式:VAE、GAN(对抗生成)、Mixup(混合增强),主要的目的是增强模型的泛化能力。

2.学习表征(Representation learning)

该方法可以表征为:

通过对以上式子中各部分的学习来表征域的特征,主要方法有四种

①Kernel-based method :传统方法,主要依赖核投射技巧

②Domain adversarial learing:对抗方法,基于对抗网络进行混淆

③Explicit feature alignment:显式的减少域之间的差异,域对齐

④Invariant risk minimization:范式方法

⑤Feature disentanglement :解耦,提取出相同类别中共同特征

主要分为两种:1.UndoBias :将权重分为两种(其中为所有域的公共特征,为每个域私有的特征)

2.Generative modeling:使用生成网络进行解耦

3.学习策略(Learning strategy)

①Meta-learning(源学习)

将源域分解为若干个小任务

②Ensemble learning(集成学习)

认为目标域是源域的线性组合,表现在实际操作中是各种结果按照一定权重进行组合(类似于投票)

相关推荐
uesowys2 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
人工智能AI技术2 小时前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin3 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_3 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
aiguangyuan3 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp
Yeats_Liao3 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
深圳市恒星物联科技有限公司3 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星3 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃3 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao3 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm