[迁移学习]领域泛化

一、概念

相较于领域适应领域泛化(Domain generalization)最显著的区别在于训练过程中不能访问测试集。

领域泛化的损失函数一般可以描述为以下形式:

该式分为三项:第一项表示各训练集权重 的线性组合,其中π为使该项最小的系数;第二项表示域间距离 ,其中表示目标域和源域之间最小的距离、表示源域之间两两组合的最大距离;第三项表示理想风险(ideal joint risk),一般情况下可以忽略。

二、分类

1.数据操作(Data manipulation)

该方法体现在对数据集的操作,主要分为数据增强 (Data augmentation)和数据生成(Data generation)

其中数据增强 主要的方式是对图像进行尺寸、颜色、亮度、对比度的调整,旋转、添加噪声等操作。可由其增强的方向分为:相关数据增强对抗数据增强

数据生成主要有3种方式:VAE、GAN(对抗生成)、Mixup(混合增强),主要的目的是增强模型的泛化能力。

2.学习表征(Representation learning)

该方法可以表征为:

通过对以上式子中各部分的学习来表征域的特征,主要方法有四种

①Kernel-based method :传统方法,主要依赖核投射技巧

②Domain adversarial learing:对抗方法,基于对抗网络进行混淆

③Explicit feature alignment:显式的减少域之间的差异,域对齐

④Invariant risk minimization:范式方法

⑤Feature disentanglement :解耦,提取出相同类别中共同特征

主要分为两种:1.UndoBias :将权重分为两种(其中为所有域的公共特征,为每个域私有的特征)

2.Generative modeling:使用生成网络进行解耦

3.学习策略(Learning strategy)

①Meta-learning(源学习)

将源域分解为若干个小任务

②Ensemble learning(集成学习)

认为目标域是源域的线性组合,表现在实际操作中是各种结果按照一定权重进行组合(类似于投票)

相关推荐
极小狐21 小时前
比 Cursor 更丝滑的 AI DevOps 编程智能体 - CodeRider-Kilo 正式发布!
运维·人工智能·devops
半臻(火白)21 小时前
Prompt-R1:重新定义AI交互的「精准沟通」范式
人工智能
菠菠萝宝1 天前
【AI应用探索】-10- Cursor实战:小程序&APP - 下
人工智能·小程序·kotlin·notepad++·ai编程·cursor
连线Insight1 天前
架构调整后,蚂蚁继续死磕医疗健康“硬骨头”
人工智能
小和尚同志1 天前
十月份 AI Coding 实践!Qoder、CC、Codex 还是 iflow?
人工智能·aigc
keke.shengfengpolang1 天前
中专旅游管理专业职业发展指南:从入门到精通的成长路径
人工智能·旅游
Danceful_YJ1 天前
35.微调BERT
人工智能·深度学习·bert
ZPC82101 天前
FPGA 部署ONNX
人工智能·python·算法·机器人
愿没error的x1 天前
深度学习基础知识总结(一):深入理解卷积(Convolution)
人工智能·深度学习
罗西的思考1 天前
【智能硬件】AI 眼镜论文笔记
人工智能