[迁移学习]领域泛化

一、概念

相较于领域适应领域泛化(Domain generalization)最显著的区别在于训练过程中不能访问测试集。

领域泛化的损失函数一般可以描述为以下形式:

该式分为三项:第一项表示各训练集权重 的线性组合,其中π为使该项最小的系数;第二项表示域间距离 ,其中表示目标域和源域之间最小的距离、表示源域之间两两组合的最大距离;第三项表示理想风险(ideal joint risk),一般情况下可以忽略。

二、分类

1.数据操作(Data manipulation)

该方法体现在对数据集的操作,主要分为数据增强 (Data augmentation)和数据生成(Data generation)

其中数据增强 主要的方式是对图像进行尺寸、颜色、亮度、对比度的调整,旋转、添加噪声等操作。可由其增强的方向分为:相关数据增强对抗数据增强

数据生成主要有3种方式:VAE、GAN(对抗生成)、Mixup(混合增强),主要的目的是增强模型的泛化能力。

2.学习表征(Representation learning)

该方法可以表征为:

通过对以上式子中各部分的学习来表征域的特征,主要方法有四种

①Kernel-based method :传统方法,主要依赖核投射技巧

②Domain adversarial learing:对抗方法,基于对抗网络进行混淆

③Explicit feature alignment:显式的减少域之间的差异,域对齐

④Invariant risk minimization:范式方法

⑤Feature disentanglement :解耦,提取出相同类别中共同特征

主要分为两种:1.UndoBias :将权重分为两种(其中为所有域的公共特征,为每个域私有的特征)

2.Generative modeling:使用生成网络进行解耦

3.学习策略(Learning strategy)

①Meta-learning(源学习)

将源域分解为若干个小任务

②Ensemble learning(集成学习)

认为目标域是源域的线性组合,表现在实际操作中是各种结果按照一定权重进行组合(类似于投票)

相关推荐
七牛云行业应用1 分钟前
从API调用到智能体编排:GPT-5时代的AI开发新模式
大数据·人工智能·gpt·openai·agent开发
StarPrayers.3 分钟前
用 PyTorch 搭建 CIFAR10 线性分类器:从数据加载到模型推理全流程解析
人工智能·pytorch·python
Ro Jace31 分钟前
模式识别与机器学习课程笔记(11):深度学习
笔记·深度学习·机器学习
碱化钾34 分钟前
Lipschitz连续及其常量
人工智能·机器学习
两万五千个小时40 分钟前
LangChain 入门教程:06LangGraph工作流编排
人工智能·后端
渡我白衣1 小时前
深度学习进阶(六)——世界模型与具身智能:AI的下一次跃迁
人工智能·深度学习
人工智能技术咨询.1 小时前
【无标题】
人工智能·深度学习·transformer
云卓SKYDROID1 小时前
无人机激光避障技术概述
人工智能·无人机·航电系统·高科技·云卓科技
蜉蝣之翼❉1 小时前
图像处理之浓度(AI 调研)
图像处理·人工智能·机器学习
mwq301231 小时前
Transformer: LayerNorm层归一化模块详解(PyTorch实现)
人工智能