[oneAPI] 手写数字识别-卷积

[oneAPI] 手写数字识别

比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517

Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/

手写数字识别

使用了pytorch以及Intel® Optimization for PyTorch,通过优化扩展了 PyTorch,使英特尔硬件的性能进一步提升,让手写数字识别问题更加的快速高效

使用MNIST数据集,该数据集包含了一系列以黑白图像表示的手写数字,每个图像的大小为28x28像素,数据集组成如下:

  • 训练集:包含60,000个图像和标签,用于训练模型。
  • 测试集:包含10,000个图像和标签,用于测试模型的性能。

每个图像都被标记为0到9之间的一个数字,表示图像中显示的手写数字。这个数据集常常被用来验证图像分类模型的性能,特别是在计算机视觉领域。

参数与包

python 复制代码
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

import intel_extension_for_pytorch as ipex

# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')

# Hyper parameters
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001

加载数据

python 复制代码
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./data/',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='./data/',
                                          train=False,
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)

模型

python 复制代码
# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7 * 7 * 32, num_classes)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out

训练过程

python 复制代码
model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

# Test the model
model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

结果


oneAPI

python 复制代码
import intel_extension_for_pytorch as ipex

# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')

# 模型
model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)
相关推荐
地衣君9 天前
服务器一次性部署One API + ChatGPT-Next-Web
服务器·前端·chatgpt·aigc·oneapi
地衣君10 天前
配置 One API + ChatGPT-Next-Web,以讯飞星火认知大模型为例
前端·chatgpt·oneapi
陈思杰系统思考Jason1 个月前
系统思考沙盘模拟
微信·微信公众平台·oneapi·新浪微博·微信开放平台
Estar.Lee2 个月前
查手机号归属地免费API接口教程
android·网络·后端·网络协议·tcp/ip·oneapi
华尔街的幻觉2 个月前
FastGPT部署通义千问Qwen和智谱glm模型|OneAPI配置免费的第三方API
oneapi·通义千问·fastgpt·智谱ai·硅基流动
PleaSure乐事3 个月前
Ant-Dseign-Pro如何去国际化及删除oneapi.json后出现程序直接结束问题的解决方案
前端·javascript·react.js·前端框架·json·oneapi·antdesignpro
z千鑫3 个月前
【AI开源项目】Botpress - 开源智能聊天机器人平台及其部署方案
人工智能·python·机器人·开源·自动化·oneapi
warrah3 个月前
fastGpt
oneapi·fastgpt·ollama
LeslieChan_专业海外留学服务4 个月前
美本申请怎么填写课外活动?这些细节值得注意
c++·uni-app·c#·oneapi·cmmi·墨刀