常用的数据存储格式在大数据处理中

说明

ORC(Optimized Row Columnar)和Parquet是两种流行的列式存储文件格式,而LZO是一种用于压缩数据的算法。下面是对这些数据格式和算法的简要说明:

  • ORC(Optimized Row Columnar):
    • 设计目的:ORC是一种高效的列式存储文件格式,旨在提高数据存储和查询性能。它通过使用行组(row groups)、列存储、索引和压缩技术等来实现这个目标。
    • 算法:ORC使用基于列的存储方式,将相同列的数据连续存储,以便提高压缩比和查询性能。它还通过使用索引、位图和跳跃列表等技术来加速数据访问和过滤操作。此外,ORC支持多种压缩算法,如Snappy、Zlib和LZO等。
  • Parquet:
    • 设计目的:Parquet是一种列式存储文件格式,旨在提供高效的数据压缩和高性能的列操作(如投影、过滤和聚合)。它被广泛应用于大数据生态系统(如Hadoop和Spark)中。
    • 算法:Parquet使用一系列技术来提高查询性能和压缩效率。它使用压缩算法(如Snappy、Gzip和LZO)来减小数据文件的大小。此外,Parquet还实现了高度优化的列存储方式,采用避免重复值和位间压缩(RLE和BIT-PACKING)等技术,以减少存储空间和加速数据访问。
  • LZO(Lempel-Ziv-Oberhumer):
    • 设计目的:LZO是一种高速压缩算法,旨在提供快速的数据压缩和解压缩性能。它通常用于大数据环境中,以减小存储空间和提高数据传输效率。
    • 算法:LZO算法基于Lempel-Ziv算法家族,通过利用字符串重复和字典编码来实现高效压缩。它具有较快的压缩和解压缩速度,并且可以在有限的压缩比下提供较高的吞吐量。

这些数据格式和算法都是为了提高大数据处理的效率和性能而设计的。它们以不同的方式进行数据存储、压缩和访问优化,以满足不同的业务需求和查询场景。选择合适的数据格式和压缩算法,可以根据实际情况和具体需求来决定,以实现更高效的数据处理和查询性能。

Simply put

ORC (Optimized Row Columnar) and Parquet are two popular columnar storage file formats, while LZO is an algorithm used for data compression. Here is a brief explanation of these data formats and algorithm:

ORC (Optimized Row Columnar): Design Purpose: ORC is an efficient columnar storage file format designed to improve data storage and query performance. It achieves this goal by using techniques such as row groups, columnar storage, indexing, and compression. Algorithm: ORC uses column-based storage by storing data of the same column consecutively, which improves compression ratio and query performance. It also speeds up data access and filtering operations through the use of indexes, bitmaps, and skip lists. Additionally, ORC supports multiple compression algorithms such as Snappy, Zlib, and LZO.

Parquet: Design Purpose: Parquet is a columnar storage file format designed to provide efficient data compression and high-performance column operations such as projection, filtering, and aggregation. It is widely used in big data ecosystems like Hadoop and Spark. Algorithm: Parquet uses several techniques to improve query performance and compression efficiency. It employs compression algorithms such as Snappy, Gzip, and LZO to reduce file size. Additionally, Parquet implements optimized columnar storage with techniques like RLE (Run Length Encoding) and BIT-PACKING to minimize storage space and accelerate data access.

LZO (Lempel-Ziv-Oberhumer): Design Purpose: LZO is a high-speed compression algorithm designed to provide fast data compression and decompression performance. It is commonly used in large-scale data environments to reduce storage space and improve data transfer efficiency. Algorithm: The LZO algorithm is based on the Lempel-Ziv algorithm family and achieves efficient compression by leveraging string repetition and dictionary encoding. It offers fast compression and decompression speeds and can provide high throughput with modest compression ratios.

相关推荐
studying_mmr15 天前
Estimator (Statistic for Machine Learning)
人工智能·机器学习·big data·data·統計學
一雨方知深秋2 个月前
prop校验,prop和data区别
前端·javascript·webpack·data·prop校验
bug菌¹4 个月前
滚雪球学Oracle[6.2讲]:Data Guard与灾难恢复
数据库·oracle·data·灾难恢复·guard
missingzlp7 个月前
Data Management Controls
信息可视化·map·data·grid·charts
Anakki8 个月前
Unable to parse response body for Response{requestLine=PUT
elasticsearch·springboot·data·requestline·parse·unable
卢延吉1 年前
Key Insights for CIOs, Chief Data Officers, and Data Leader
data