import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
# 获得数据
names=['Sample code number','Clump Thickness','Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion','Single Hpithelial Cell Size','Bare Nucle','Bland Chromatin','Normal Nucleoli','Mitomeos','Class']
data=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=names)
# 处理数据 处理掉数据里的缺失值
data=data.replace(to_replace="?",value=np.nan)
# 使用dropna删除替代过的数据
data=data.dropna()
# 分类数据 特征值 标准值
x=data.iloc[:,1:-1]
y=data["Class"]
# 分割数据
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=20)
# 标准化数据
transfer =StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.fit_transform(x_test)
# 训练模型
estimator=LogisticRegression()
ret=estimator.fit(x_train,y_train)
print(ret)
# 模型评估
print(estimator.score(x_test,y_test))
机器学习之逻辑回归
我叫小邋遢2023-08-19 22:53
相关推荐
虹科网络安全2 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台70asunflower3 小时前
基于锚点(聚类)的LLM微调Hcoco_me3 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?BHXDML3 小时前
第九章:EM 算法q_35488851534 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅brent4235 小时前
DAY54 CBAM注意力Hcoco_me5 小时前
大模型面试题90:half2,float4这种优化 与 pack优化的底层原理是什么?卡尔AI工坊7 小时前
Andrej Karpathy:过去一年大模型的六个关键转折jay神8 小时前
指纹识别考勤打卡系统 - 完整源码项目高洁019 小时前
数字孪生与数字样机的技术基础:建模与仿真