期望和方差的计算

均匀分布:

均匀分布的概率密度函数(PDF):
p(x)={1b−a如果a≤x≤b0其他情况 p(x)=\begin{cases}\frac{1}{b−a} & 如果 a≤x≤b\\ 0 & 其他情况 \end{cases} p(x)={b−a10如果a≤x≤b其他情况

计算期望值(均值):
E[X]=∫abx⋅p(x) dx=∫abx⋅1b−a dx=a+b2 E[X]=∫_a^bx⋅p(x) dx=∫_a^bx⋅\frac{1}{b−a} dx=\frac{a+b}{2} E[X]=∫abx⋅p(x) dx=∫abx⋅b−a1 dx=2a+b

计算方差(二阶矩减去均值的平方):
Var(X)=E(X−E(X))2=E[X2]−(E[X])2 Var(X)=E(X-E(X))^2=E[X^2]−(E[X])^2 Var(X)=E(X−E(X))2=E[X2]−(E[X])2

  • 先计算 E[X2]E[X^2]E[X2]:
    E[X2]=∫abx2⋅1b−a dx=b3−a33(b−a)=a2+ab+b23 E[X^2]=∫_a^bx^2⋅\frac{1}{b−a} dx=\frac{b^3−a^3}{3(b−a)}=\frac{a^2+ab+b^2}{3} E[X2]=∫abx2⋅b−a1 dx=3(b−a)b3−a3=3a2+ab+b2

  • 代入方差公式:
    Var(X)=a2+ab+b23−(a+b2)2=(b−a)212 Var(X)=\frac{a^2+ab+b^2}{3}−(\frac{a+b}{2})^2=\frac{(b−a)^2}{12} Var(X)=3a2+ab+b2−(2a+b)2=12(b−a)2

相关推荐
kisshuan123962 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits2 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅3 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448373 小时前
机器学习基本概念与梯度下降
人工智能
水如烟4 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿4 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——4 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程5 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator5 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能