时序分解 | MATLAB实现基于SVMD逐次变分模态分解的信号分解分量可视化

时序分解 | MATLAB实现基于SVMD逐次变分模态分解的信号分解分量可视化

目录

    • [时序分解 | MATLAB实现基于SVMD逐次变分模态分解的信号分解分量可视化](#时序分解 | MATLAB实现基于SVMD逐次变分模态分解的信号分解分量可视化)

效果一览

基本介绍

SVMD分解算法,分解结果可视化,MATLAB程序,逐次变分模态分解SVMD(successive variational mode decomposition), 在VMD的基础上对本征模态函数(intrinsic mode function, IMF)的个数设置做出改进,使其影响降至最低,子模态分量的提取效率大幅提高。SVMD通过在原始优化问题中加入自适应准则进行模态分解,用参数优化的方法代替经验参数算法,通过分解信号值求得模态中心频率的近似值从而求得理想的IMF。

从Excel表格中读取,直接替换数据就可以使用,不需要对程序大幅度改动。程序内有详细注释,便于理解程序运行。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现基于SVMD逐次变分模态分解的信号分解分量可视化
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

cosD = pdist(meas,'cosine');
clustTreeCos = linkage(cosD,'average');
cophenet(clustTreeCos,cosD)

ans =

    0.9360
[h,nodes] = dendrogram(clustTreeCos,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826



figure
hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.006);
for i = 1:5
    clust = find(hidx==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on

------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161

[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
机器不会学习CL2 个月前
信号分解|基于北方苍鹰优化变分模态分解的时序信号分解Matlab程序NGO-VMD
开发语言·matlab·信号分解·智能优化算法
机器学习之心1 年前
时序分解 | MATLAB实现基于SWD群体分解的信号分解分量可视化
matlab·信号分解·分量可视化·swd·群体分解