机器学习之softmax

Softmax是一个常用于多类别分类问题的激活函数和归一化方法。它将一个向量的原始分数(也称为 logits)转换为概率分布,使得每个类别的概率值在0到1之间,同时确保所有类别的概率之和等于1。Softmax函数的定义如下:

对于给定的输入向量 z = [z1, z2, ..., zn],Softmax 函数将其映射到一个概率分布向量 p = [p1, p2, ..., pn],其中:

p_i = \\frac{e^{z_i}}{\\sum_{j=1}^{n}e\^{z_j}}

其中,e 表示自然对数的底(约为2.71828)。Softmax函数的核心思想是通过指数化每个输入值,并将它们归一化,以确保它们之和为1。这样可以将原始分数转换为概率。

以下是Softmax函数的一些特点和应用:

  1. 多类别分类:Softmax常用于多类别分类问题,其中每个类别都对应于输出向量中的一个元素。模型会计算每个类别的原始分数,然后使用Softmax将其转换为概率分布,从而选择具有最高概率的类别作为预测结果。

  2. 概率表示:Softmax确保输出是一个有效的概率分布,因此可以解释为每个类别的估计概率。

  3. 损失函数:在训练分类模型时,常用交叉熵损失函数与Softmax结合使用。这个损失函数可以测量模型的预测概率与实际标签之间的差异,并用于优化模型参数。

  4. 过拟合问题:Softmax可以减轻过拟合问题,因为它将输出概率归一化,有助于模型更好地泛化到未见过的数据。

  5. Softmax回归:Softmax函数通常用于Softmax回归模型,这是一种多类别分类模型。在深度学习中,Softmax函数也经常用于神经网络的输出层,以进行多类别分类。

需要注意的是,Softmax函数的指数运算可能导致数值不稳定,特别是在输入向量的元素很大或很小的情况下。为了稳定计算,通常会在计算Softmax时使用数值技巧,例如减去输入向量中的最大值(max trick)来避免数值溢出或不稳定性。这有助于确保Softmax函数的计算精度和数值稳定性。

相关推荐
唐某人丶2 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云3 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术3 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新3 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心3 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算3 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位4 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算4 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯
聚客AI5 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar6 小时前
一文讲清 nn.Sequential 等容器类
人工智能