Given a binary string s
, return the number of non-empty substrings that have the same number of 0
's and 1
's, and all the 0
's and all the 1
's in these substrings are grouped consecutively.
Substrings that occur multiple times are counted the number of times they occur.
Example 1:
Input: s = "00110011"
Output: 6
Explanation: There are 6 substrings that have equal number of consecutive 1's and 0's: "0011", "01", "1100", "10", "0011", and "01".
Notice that some of these substrings repeat and are counted the number of times they occur.
Also, "00110011" is not a valid substring because all the 0's (and 1's) are not grouped together.
Example 2:
Input: s = "10101"
Output: 4
Explanation: There are 4 substrings: "10", "01", "10", "01" that have equal number of consecutive 1's and 0's.
Constraints:
1 <= s.length <= 105
s[i]
is either'0'
or'1'
.
这题给了一个由0和1组成的binary string,要求string中有多少个substring有相同个数的0和1并且所有0和所有1都在一起。
拿到这道题就是一个愣住,不会。于是就直接抄了答案,于是就被这个解法惊呆了。是什么样的大天才才能想到这种解法啊!
我们计算每组连续的0或者1有多少个,相邻的两组里,长度更短的就是这两组放在一起时能拿到的最多的符合条件的substring了。就这么一想确实很合理很简单,但是自己为什么就是想不到呢。我好菜啊.jpg
写起代码来也是非常简单了,就是需要注意一下最后不能直接return result,因为最后一组还没算呢,这个小坑差点掉进去了。
class Solution {
public int countBinarySubstrings(String s) {
int prev = 0;
int curr = 1;
int result = 0;
for (int i = 1; i < s.length(); i++) {
if (s.charAt(i - 1) == s.charAt(i)) {
curr++;
} else {
result += Math.min(prev, curr);
prev = curr;
curr = 1;
}
}
return result + Math.min(prev, curr);
}
}