NMS算法实现

NMS算法(非极大值抑制)是目标检测算法中经典的后处理步骤,其本质是搜索局部最大值,抑制非极大值元素。主要利用目标检测框以及对应的置信度分数,设置一定的阈值来删除重叠较大的边界框。

其算法流程如下:

根据置信度得分进行排序

选择置信度最高的目标检测框添加到输出列表中,将其从检测框列表中删除

计算该检测框与剩余候选检测框的IOU

删除IOU大于阈值的检测框

重复上述4步,直至检测框列表为空

复制代码
import numpy as np


def nms(dets, thresh):  # x1, y1, x2, y2, score
    x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)  # 各个方框的面积
    order = scores.argsort()[::-1]  # 按置信度排序后的index, 作为候选集
    keep = []  # 保存筛选出来的方框的index
    while order.size > 0:

        i = order[0]  # 当前置信度最大的方框
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, (xx2 - xx1 + 1))
        h = np.maximum(0.0, (yy2 - yy1 + 1))
        inter = w * h  # 当前置信度最大的框和其他所有框的相交面积
        overlap = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(overlap <= thresh)[0]  # 交并比小于thresh的仍然保留在候选集里, 大的过滤掉
        order = order[inds + 1]  # inds + 1对应原来order中overlap小于thresh的项
    return keep


if __name__ == '__main__':
    detections = [
        [10, 20, 100, 100, 0.9],
        [20, 10, 110, 100, 0.88],
        [20, 20, 110, 110, 0.86],
        [40, 50, 200, 200, 0.95],
        [45, 52, 198, 202, 0.87]
    ]
    detections = np.array(detections)
    keeps = nms(detections, 0.5)
    print(detections[keeps])
相关推荐
一起努力啊~6 分钟前
算法刷题--链表
数据结构·算法·链表
mit6.8248 分钟前
dfs|并查集
算法
数据大魔方12 分钟前
【期货量化进阶】期货Tick数据分析与应用:高频数据入门(TqSdk完整教程)
python·算法·数据挖掘·数据分析·github·程序员创富·期货程序化
小杨同学4918 分钟前
C 语言实战:堆内存存储字符串 + 多种递归方案计算字符串长度
数据库·后端·算法
君义_noip19 分钟前
【模板:字符串哈希】信息学奥赛一本通 1455:【例题1】Oulipo
算法·哈希算法·信息学奥赛·csp-s
fengfuyao98523 分钟前
基于Matlab的压缩感知梯度投影重构算法实现方案
算法·matlab·重构
快手技术25 分钟前
打破信息茧房!快手搜索多视角正样本增强引擎 CroPS 入选 AAAI 2026 Oral
后端·算法·架构
e***985725 分钟前
MATLAB高效算法实战:从基础到进阶优化
开发语言·算法·matlab
CoderCodingNo30 分钟前
【GESP】C++五级练习(前缀和练习) luogu-P1387 最大正方形
开发语言·c++·算法