NMS算法实现

NMS算法(非极大值抑制)是目标检测算法中经典的后处理步骤,其本质是搜索局部最大值,抑制非极大值元素。主要利用目标检测框以及对应的置信度分数,设置一定的阈值来删除重叠较大的边界框。

其算法流程如下:

根据置信度得分进行排序

选择置信度最高的目标检测框添加到输出列表中,将其从检测框列表中删除

计算该检测框与剩余候选检测框的IOU

删除IOU大于阈值的检测框

重复上述4步,直至检测框列表为空

复制代码
import numpy as np


def nms(dets, thresh):  # x1, y1, x2, y2, score
    x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)  # 各个方框的面积
    order = scores.argsort()[::-1]  # 按置信度排序后的index, 作为候选集
    keep = []  # 保存筛选出来的方框的index
    while order.size > 0:

        i = order[0]  # 当前置信度最大的方框
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, (xx2 - xx1 + 1))
        h = np.maximum(0.0, (yy2 - yy1 + 1))
        inter = w * h  # 当前置信度最大的框和其他所有框的相交面积
        overlap = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(overlap <= thresh)[0]  # 交并比小于thresh的仍然保留在候选集里, 大的过滤掉
        order = order[inds + 1]  # inds + 1对应原来order中overlap小于thresh的项
    return keep


if __name__ == '__main__':
    detections = [
        [10, 20, 100, 100, 0.9],
        [20, 10, 110, 100, 0.88],
        [20, 20, 110, 110, 0.86],
        [40, 50, 200, 200, 0.95],
        [45, 52, 198, 202, 0.87]
    ]
    detections = np.array(detections)
    keeps = nms(detections, 0.5)
    print(detections[keeps])
相关推荐
进击的荆棘37 分钟前
优选算法——滑动窗口
c++·算法·leetcode
csdn_aspnet42 分钟前
奈飞工厂算法:个性化推荐系统的极限复刻
算法·netflix·奈飞
小白_ysf43 分钟前
Vue 中常见的加密方法(对称、非对称、杂凑算法)
前端·vue.js·算法
多米Domi0112 小时前
0x3f 第49天 面向实习的八股背诵第六天 过了一遍JVM的知识点,看了相关视频讲解JVM内存,垃圾清理,买了plus,稍微看了点确定一下方向
jvm·数据结构·python·算法·leetcode
A_nanda11 小时前
c# MOdbus rto读写串口,如何不相互影响
算法·c#·多线程
代码雕刻家12 小时前
2.4.蓝桥杯-分巧克力
算法·蓝桥杯
Ulyanov12 小时前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
智者知已应修善业14 小时前
【查找字符最大下标以*符号分割以**结束】2024-12-24
c语言·c++·经验分享·笔记·算法
91刘仁德14 小时前
c++类和对象(下)
c语言·jvm·c++·经验分享·笔记·算法
diediedei14 小时前
模板编译期类型检查
开发语言·c++·算法