NMS算法实现

NMS算法(非极大值抑制)是目标检测算法中经典的后处理步骤,其本质是搜索局部最大值,抑制非极大值元素。主要利用目标检测框以及对应的置信度分数,设置一定的阈值来删除重叠较大的边界框。

其算法流程如下:

根据置信度得分进行排序

选择置信度最高的目标检测框添加到输出列表中,将其从检测框列表中删除

计算该检测框与剩余候选检测框的IOU

删除IOU大于阈值的检测框

重复上述4步,直至检测框列表为空

复制代码
import numpy as np


def nms(dets, thresh):  # x1, y1, x2, y2, score
    x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)  # 各个方框的面积
    order = scores.argsort()[::-1]  # 按置信度排序后的index, 作为候选集
    keep = []  # 保存筛选出来的方框的index
    while order.size > 0:

        i = order[0]  # 当前置信度最大的方框
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, (xx2 - xx1 + 1))
        h = np.maximum(0.0, (yy2 - yy1 + 1))
        inter = w * h  # 当前置信度最大的框和其他所有框的相交面积
        overlap = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(overlap <= thresh)[0]  # 交并比小于thresh的仍然保留在候选集里, 大的过滤掉
        order = order[inds + 1]  # inds + 1对应原来order中overlap小于thresh的项
    return keep


if __name__ == '__main__':
    detections = [
        [10, 20, 100, 100, 0.9],
        [20, 10, 110, 100, 0.88],
        [20, 20, 110, 110, 0.86],
        [40, 50, 200, 200, 0.95],
        [45, 52, 198, 202, 0.87]
    ]
    detections = np.array(detections)
    keeps = nms(detections, 0.5)
    print(detections[keeps])
相关推荐
2401_8948281238 分钟前
从原理到实战:随机森林算法全解析(附 Python 完整代码)
开发语言·python·算法·随机森林
Remember_9931 小时前
【LeetCode精选算法】前缀和专题二
算法·哈希算法·散列表
源代码•宸1 小时前
Leetcode—509. 斐波那契数【简单】
经验分享·算法·leetcode·面试·golang·记忆化搜索·动规
博大世界2 小时前
matlab结构体数组定义
数据结构·算法
Loo国昌2 小时前
【LangChain1.0】第九阶段:文档处理工程 (LlamaIndex)
人工智能·后端·python·算法·langchain
Zach_yuan2 小时前
面向对象封装线程:用 C++ 封装 pthread
开发语言·c++·算法
安特尼3 小时前
X 推荐算法分析
算法·机器学习·推荐算法
罗湖老棍子4 小时前
强迫症冒险家的任务清单:字典序最小拓扑排序
数据结构·算法·图论·拓扑排序
不穿格子的程序员4 小时前
从零开始写算法——回溯篇4:分割回文串 + N皇后
算法·深度优先·dfs
ScilogyHunter4 小时前
qBI有什么用
算法·qbi