GPU 进阶笔记(二):华为昇腾 910B GPU

大家读完觉得有意义记得关注和点赞!!!


1 术语

1.1 与 NVIDIA 术语对应关系

大部分人目前还是对 NVIDIA GPU 更熟悉,所以先做一个大致对照,方便快速了解华为 GPU 产品和生态:

NVIDIA HUAWEI 功能
GPU NPU/GPU 通用并行处理器
NVLINK HCCS GPU 卡间高速互连技术
InfiniBand HCCN RDMA 产品/工具
nvidia-smi npu-smi GPU 命令行工具
CUDA CANN GPU 编程库
DCGM DCMI GPU 底层编程库/接口,例如采集监控信息

说明:华为很多地方混用术语 NPU 和 GPU,为简单起见,本文统称为 GPU。

1.2 缩写

  • NPU: Neural-network Processing Unit

  • HCCS: Huawei Cache Coherence System

  • HCCN: Huawei Cache Coherence Network

  • CANN: Huawei compute Architecture for Neural Networks

  • DCMI: DaVinci Card Management Interface

    参考下 NVIDIA 一张图,看下 DCGM/DCMI 在软件栈中的位置:

    NVIDIA nswitch software stack

2 产品与机器

2.1 GPU 产品

  • 训练:昇腾 910B,对标 NVIDIA A100/A800算力对比
  • 推理:Atlas 300 系列,对标 NVIDIA T4;

2.2 训练机器

底座 CPU

根据 CPU 不同分为两种:

  1. x86 底座

    • 客户需要适配的工作量小一些;
  2. arm 底座:鲲鹏系列

    • 华为云上一般提供的是这种
    • 功耗低,叠加液冷,可以实现比常规 NVIDIA 服务器更好的"性能/功耗"比;

功耗

16 卡昇腾 910B 训练机器,8U,功耗对比:

  • X86: 12KW
  • ARM: 4.5KW

操作系统

华为默认是自家的欧拉操作系统 EulerOS(基于 CentOS),

$ cat /etc/os-release
EulerOS release 2.0 (SP10)
NAME="EulerOS"
VERSION="2.0 (SP10)"
ID="euleros"
VERSION_ID="2.0"
PRETTY_NAME="EulerOS 2.0 (SP10)"
ANSI_COLOR="0;31"

2.3 性能

一些公开信息:

  1. 算力指标基本对齐 NVIDIA A800,卡间互联带宽还有差距;
  2. 科大讯飞称和华为联合优化之后,在他们的场景中已经达到 A100 的性能;

910B 的官方公开信息比较少,但上一代 910 是发了 paper 的,想了解内部细节(例如 HCCS)的可参考 [2]。

3 实探:鲲鹏底座 8*910B GPU 主机

8 卡训练机器配置,来自华为云环境:

  • 机型: physical.kat2ne.48xlarge.8.ei.pod101
  • CPU: Kunpeng 920 (4*48Core@2.6GHz),ARM 架构,192
  • 内存: 24*64GB DDR4
  • 网卡: 2*100G + 8*200G
  • 浸没式液冷

3.1 CPU

$ cat /proc/cpuinfo
...
processor       : 191
BogoMIPS        : 200.00
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma dcpop asimddp asimdfhm ssbs
CPU implementer : 0x48 # <-- ARM_CPU_IMP_HISI
CPU architecture: 8
CPU variant     : 0x1
CPU part        : 0xd01
CPU revision    : 0

CPU implementer 是 CPU 厂商, ARM 架构的完整列表见内核源码 arch/arm64/include/asm/cputype.h, 其中 0x48 对应的是华为海思。

3.2 网卡和网络

网卡:

$ ip addr # 输出有精简
2: enp67s0f5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    inet 192.168.0.128/24 brd 192.168.0.255 scope global dynamic noprefixroute enp67s0f5
3: enp189s0f0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel state DOWN group default qlen 1000
4: enp189s0f1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel state DOWN group default qlen 1000
5: enp189s0f2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel state DOWN group default qlen 1000
6: enp189s0f3: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel state DOWN group default qlen 1000

看到只有网卡 2 上配置了 IP 地址。3~6 是 RDMA 网卡,需要用华为的 RDMA 命令行工具 hccn_tool 来查看和修改配置:

$ hccn_tool -i 3 -status -g # 相当于 ethtool <eth NIC>
Netdev status:Settings for eth3:
        Supported ports: [ Backplane ]
        Supported link modes:   1000baseKX/Full
                                ...
                                100000baseKR4/Full
        Supported pause frame use: Symmetric
        Supports auto-negotiation: No
        Supported FEC modes: None        RS
        Advertised link modes:  Not reported
        Speed: 200000Mb/s   # <-- 200Gbps 网卡
        ...

查看一些硬件统计:

$  hccn_tool -i 3 -hw_stats -g
[devid 3] pd_alloc: 1
[devid 3] pd_dealloc: 0
[devid 3] mr_alloc: 0
[devid 3] mr_dealloc: 0
[devid 3] cq_alloc: 1
[devid 3] cq_dealloc: 0
[devid 3] qp_alloc: 1
[devid 3] qp_dealloc: 0
[devid 3] pd_active: 1
[devid 3] mr_active: 0
[devid 3] cq_active: 1
[devid 3] qp_active: 1
[devid 3] aeqe: 0
[devid 3] ceqe: 0

查看 LLDP 信息(直连的交换机):

$  hccn_tool -i 3 -lldp -g # 类似以太网中的 lldpctl/lldpcli
Chassis ID TLV
        MAC: ...
Port ID TLV
        Ifname: 400GE1/1/20:2
System Description TLV
        Versatile Routing Platform Software
VRP (R) software, Version 8.211 (DX511 V200R021C10SPC600)

Huarong DX511

System Capabilities TLV
        Enabled capabilities: Bridge, Router
Management Address TLV
        IPv4: 26.xx.xx.xx
...
Maximum Frame Size TLV
        9216
End of LLDPDU TLV

查看网卡的 IP 地址和路由:

$ hccn_tool -i 3 -ip -g
ipaddr:29.1.112.213
netmask:255.255.0.0

$  hccn_tool -i 3 -route -g
Routing table:
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
default         29.1.0.1        0.0.0.0         UG    0      0        0 eth3
29.1.0.0        *               255.255.0.0     U     0      0        0 eth3
127.0.0.1       *               255.255.255.255 UH    0      0        0 lo
192.168.1.0     *               255.255.255.0   U     0      0        0 end3v0
192.168.2.0     *               255.255.255.0   U     0      0        0 end3v0

RDMA 网卡的启动配置其实在配置文件,

$ cat /etc/hccn.conf # RDMA 网卡 0-7 的配置
address_0=29.1.137.205
netmask_0=255.255.0.0
netdetect_0=29.1.0.1
gateway_0=29.1.0.1
send_arp_status_0=1
...
address_7=29.1.170.143
netmask_7=255.255.0.0
netdetect_7=29.1.0.1
gateway_7=29.1.0.1
send_arp_status_7=1

RDMA ping:

$ hccn_tool -i 3 -ping -g address 29.1.137.205
device 3 PING 29.1.137.205
recv seq=0,time=1.418000ms
recv seq=1,time=0.034000ms
recv seq=2,time=0.040000ms
3 packets transmitted, 3 received, 0.00% packet loss

3.3 GPU 信息

$ npu-smi info
+------------------------------------------------------------------------------------------------+
| npu-smi 23.0.rc2                 Version: 23.0.rc2                                             |
+---------------------------+---------------+----------------------------------------------------+
| NPU   Name                | Health        | Power(W)    Temp(C)           Hugepages-Usage(page)|
| Chip                      | Bus-Id        | AICore(%)   Memory-Usage(MB)  HBM-Usage(MB)        |
+===========================+===============+====================================================+
| 0     910B1               | OK            | 88.4        46                0    / 0             |
| 0                         | 0000:C1:00.0  | 0           0    / 0          4175 / 65536         |
+===========================+===============+====================================================+
| 1     910B1               | OK            | 92.1        47                0    / 0             |
| 0                         | 0000:01:00.0  | 0           0    / 0          4175 / 65536         |
+===========================+===============+====================================================+
...
+===========================+===============+====================================================+
| 7     910B1               | OK            | 92.7        48                0    / 0             |
| 0                         | 0000:42:00.0  | 0           0    / 0          4174 / 65536         |
+===========================+===============+====================================================+
  • GPU 型号 910B1

  • 64GB HBM 显存

    $ npu-smi info -h
    Usage: npu-smi info <watch|proc|-h|-m|-l|-t type> [Options...]

    Commands:
    watch Show all device's status in scrolling format
    proc Show device's matrix process status in scrolling format
    -h, --help Show this help text and exit
    -m Show all device's mapping information
    -l Show all device's topology information
    -t type Show information for type
    type: board, flash, memory, usages, sensors, temp, power, volt, mac-addr,
    common, health, product, ecc, ip, sys-time, i2c_check, work-mode,
    ecc-enable, p2p-enable, ssh-enable, license, customized-info,
    device-share, nve-level, aicpu-config, pcie-err, mcu-monitor,
    err-count, boot-area, vnpu-mode, info-vnpu, vnpu-svm, cpu-num-cfg,
    first-power-on-date, proc-mem, phyid-remap, vnpu-cfg-recover, key-manage,
    template-info, pkcs-enable, p2p-mem-cfg, pwm-mode, pwm-duty-ratio,
    boot-select, topo.

    Options:
    -i %d Card ID
    -c %d Chip ID
    -p %d Chip Physical ID

3.3.1 GPU 卡间互连:HCCS

角色类似于 NVIDIA NVLink。

$ npu-smi info -t topo
NPU0       NPU1       NPU2       NPU3       NPU4       NPU5       NPU6       NPU7       CPU Affinity
NPU0       X          HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       144-167
NPU1       HCCS       X          HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       0-23
NPU2       HCCS       HCCS       X          HCCS       HCCS       HCCS       HCCS       HCCS       144-167
NPU3       HCCS       HCCS       HCCS       X          HCCS       HCCS       HCCS       HCCS       0-23
NPU4       HCCS       HCCS       HCCS       HCCS       X          HCCS       HCCS       HCCS       96-119
NPU5       HCCS       HCCS       HCCS       HCCS       HCCS       X          HCCS       HCCS       48-71
NPU6       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       X          HCCS       96-119
NPU7       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       X          48-71

Legend:
  X    = Self
  SYS  = Path traversing PCIe and NUMA nodes. Nodes are connected through SMP, such as QPI, UPI.
  PHB  = Path traversing PCIe and the PCIe host bridge of a CPU.
  PIX  = Path traversing a single PCIe switch
  PXB  = Path traversing multipul PCIe switches
  HCCS = Connection traversing HCCS.

很多资料都说 910B 的卡间互连带宽是 392GB/s,看起来跟 A800 的 400GB/s 差不多了, 但其实还是有区别的,主要是互连拓扑不同导致的,详见 [1]。

3.3.2 GPU/Memory 使用率

第一个 chip 的利用率:

$ npu-smi info -t usages -i 0
        NPU ID                         : 0
        Chip Count                     : 1

        DDR Capacity(MB)               : 0
        DDR Usage Rate(%)              : 0
        DDR Hugepages Total(page)      : 0
        DDR Hugepages Usage Rate(%)    : 0
        HBM Capacity(MB)               : 65536
        HBM Usage Rate(%)              : 4
        Aicore Usage Rate(%)           : 0
        Aivector Usage Rate(%)         : 0
        Aicpu Usage Rate(%)            : 0
        Ctrlcpu Usage Rate(%)          : 0
        DDR Bandwidth Usage Rate(%)    : 0
        HBM Bandwidth Usage Rate(%)    : 0
        Chip ID                        : 0

第二个 chip 的常规利用率信息:

$ npu-smi info -t common -i 1
        NPU ID                         : 1
        Chip Count                     : 1

        Chip ID                        : 0
        Memory Usage Rate(%)           : 0
        HBM Usage Rate(%)              : 4
        Aicore Usage Rate(%)           : 0
        Aicore Freq(MHZ)               : 1800
        Aicore curFreq(MHZ)            : 800
        Aicore Count                   : 24
        Temperature(C)                 : 46
        NPU Real-time Power(W)         : 93.4

        Chip Name                      : mcu
        Temperature(C)                 : 38

3.4 Linux 设备

8 张 910B GPU 及一个管理设备:

$ ls /dev/davinci*
/dev/davinci0  /dev/davinci1  /dev/davinci2  /dev/davinci3  /dev/davinci4  /dev/davinci5  /dev/davinci6  /dev/davinci7  /dev/davinci_manager

davinci 是华为 GPU/NPU 的架构名,更多信息见下一篇 GPU 进阶笔记(三):华为 NPU (GPU) 演进(2024)。 还有两个设备比较重要:

$ ll /dev/hisi_hdc # HDC-related management device
crw-rw---- 1 HwHiAiUser HwHiAiUser 237, 0  /dev/hisi_hdc

$ ll /dev/devmm_svm # Memory-related management device
crw-rw---- 1 HwHiAiUser HwHiAiUser 238, 0  /dev/devmm_svm

4 容器相关

docker 配置:

$ cat /etc/docker/daemon.json
{
  "runtimes":     {
    "ascend":       {
      "path": "/usr/local/Ascend/Ascend-Docker-Runtime/ascend-docker-runtime",
      "runtimeArgs":  []
    }
  },
  "default-shm-size":     "8G",
  "default-runtime":      "ascend"
}

然后 docker run 可以直接启动容器,挂载必要的设备、驱动等等:

$ sudo docker run -itd --cap-add=SYS_PTRACE --net=host --shm-size="32g" \
  --device=/dev/davinci0 --device=/dev/davinci1 --device=/dev/davinci2 \
  --device=/dev/davinci3 --device=/dev/davinci4 --device=/dev/davinci5 \
  --device=/dev/davinci6 --device=/dev/davinci7 \
  --device=/dev/davinci_manager \
  --device=/dev/devmm_svm \
  --device=/dev/hisi_hdc \
  -v /usr/local/dcmi:/usr/local/dcmi \
  -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
  -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi  \
  --name <name> <image> /bin/bash

$ ls /usr/local/dcmi/
dcmi_interface_api.h  libdcmi.so

用 k8s 部署 pod 目前问题会比较多。

参考资料

  1. GPU Performance (Data Sheets) Quick Reference (2023)
  2. Ascend: a Scalable and Unified Architecture for Ubiquitous Deep Neural Network Computing, HPCA, 2021
  3. Introduction to the npu-smi Command, huawei.com, 2023
  4. Host Directories Mounted to a Container, huawei.com, 2024
相关推荐
AI探索家_星海算力2 小时前
如何配置【Docker镜像】加速器+【Docker镜像】的使用
运维·人工智能·docker·容器·gpu算力
微学AI20 小时前
GPU算力平台的应用之任意门:任意穿搭匹配模型的应用教程
服务器·人工智能·gpu算力
岸边的风20 小时前
蓝耘:GPU算力云服务的技术探索与AIGC应用支持
aigc·gpu算力·蓝耘gpu智算云平台
百度智能云技术站4 天前
唤醒 AI 算力,专有云 ABC Stack 面向企业级智算平台的 GPU 提效实践
人工智能·gpu算力
高性能服务器10 天前
《异构计算:多元算力聚变,点燃高性能计算新引擎 – CPU、GPU与FPGA算力融合》
深度学习·fpga开发·gpu算力·hpc·高性能计算·异构计算·通用计算
元宇宙时间11 天前
DPIN基金会在曼谷发布全球去中心化GPU算力网络计划
去中心化·区块链·gpu算力
JiaWen技术圈11 天前
HuaWei、NVIDIA 数据中心 AI 算力对比
人工智能·华为·gpu算力·英伟达
科技云报道12 天前
《算力互联互通标准体系1.0》发布,为算力互联成网发展提供指导框架
gpu算力
猫头虎13 天前
新纪天工 开物焕彩:重大科技成就发布会参会感
人工智能·开源·aigc·开放原子·开源软件·gpu算力·agi