list(介绍与实现)

目录

[1. list的介绍及使用](#1. list的介绍及使用)

[1.1 list的介绍](#1.1 list的介绍)

[1.2 list的使用](#1.2 list的使用)

[1.2.1 list的构造](#1.2.1 list的构造)

[1.2.2 list iterator的使用](#1.2.2 list iterator的使用)

[1.2.3 list capacity](#1.2.3 list capacity)

[1.2.4 list element access](#1.2.4 list element access)

[1.2.5 list modififiers](#1.2.5 list modififiers)

[1.2.6 list的迭代器失效](#1.2.6 list的迭代器失效)

[2. list的模拟实现](#2. list的模拟实现)

[2.1 模拟实现list](#2.1 模拟实现list)

[2.2 list的反向迭代器](#2.2 list的反向迭代器)


1. list****的介绍及使用

1.1 list****的介绍

  1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list 的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. list 与 forward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比 (array , vector , deque) , list 通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比, list 和 forward_list 最大的缺陷是不支持任意位置的随机访问,比如:要访问 list的第6 个元素,必须从已知的位置 ( 比如头部或者尾部 ) 迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些额外的空间,以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 list 来说这可能是一个重要的因素)

1.2 list****的使用

list 中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list 中一些 常见的重要接口

1.2.1 list****的构造

构造函数(
(constructor)
接口说明
list (size_type n, const value_type& val = value_type())
构造的 list 中包含 n 个值为 val 的元素
list()
构造空的 list
list (const list& x)
拷贝构造函数
list (InputIterator fifirst, InputIterator last)
[fifirst, last) 区间中的元素构造 list

1.2.2 list iterator****的使用

此处,大家可暂时 将迭代器理解成一个指针,该指针指向 list 中的某个节点

【注意】

  1. begin end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动
  2. rbegin(end) rend(begin) 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动

1.2.3 list capacity

1.2.4 list element access

1.2.5 list modififiers

函数声明
接口说明
push_front
list 首元素前插入值为 val 的元素
pop_front
删除 list 中第一个元素
push_back
list 尾部插入值为 val 的元素
pop_back
删除 list 中最后一个元素
insert
list position 位置中插入值为 val 的元素
erase
删除 list position 位置的元素
swap
交换两个 list 中的元素
clear
清空 list 中的有效元素

1.2.6 list****的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针, 迭代器失效即迭代器所指向的节点的无效,即该节 点被删除了 。因为 list 的底层结构为带头结点的双向循环链表 ,因此 list 中进行插入时是不会导致 list 的迭代 器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

2. list****的模拟实现

2.1模拟实现list

要模拟实现 list ,必须要熟悉 list 的底层结构以及其接口的含义,通过上面的学习,这些内容已基本掌握,现在我们来模拟实现list 。

#pragma once

#include <iostream>
using namespace std;
#include <assert.h>

namespace bite
{
	// List的节点类
	template<class T>
	struct ListNode
	{
		ListNode(const T& val = T())
			: _prev(nullptr)
			, _next(nullptr)
			, _val(val)
		{}

		ListNode<T>* _prev;
		ListNode<T>* _next;
		T _val;
	};

	/*
	List 的迭代器
	迭代器有两种实现方式,具体应根据容器底层数据结构实现:
	  1. 原生态指针,比如:vector
	  2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法:
		 1. 指针可以解引用,迭代器的类中必须重载operator*()
		 2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()
		 3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)
			至于operator--()/operator--(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前             移动,所以需要重载,如果是forward_list就不需要重载--
		 4. 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()
	*/
	template<class T, class Ref, class Ptr>
	class ListIterator
	{
		typedef ListNode<T> Node;
		typedef ListIterator<T, Ref, Ptr> Self;

		// Ref 和 Ptr 类型需要重定义下,实现反向迭代器时需要用到
	public:
		typedef Ref Ref;
		typedef Ptr Ptr;
	public:
		//
		// 构造
		ListIterator(Node* node = nullptr)
			: _node(node)
		{}

		//
		// 具有指针类似行为
		Ref operator*() 
		{ 
			return _node->_val;
		}

		Ptr operator->() 
		{ 
			return &(operator*()); 
		}

		//
		// 迭代器支持移动
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		Self operator++(int)
		{
			Self temp(*this);
			_node = _node->_next;
			return temp;
		}

		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		Self operator--(int)
		{
			Self temp(*this);
			_node = _node->_prev;
			return temp;
		}

		//
		// 迭代器支持比较
		bool operator!=(const Self& l)const
		{ 
			return _node != l._node;
		}

		bool operator==(const Self& l)const
		{ 
			return _node != l._node;
		}

		Node* _node;
	};

	template<class Iterator>
	class ReverseListIterator
	{
		// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量
		// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
		// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
	public:
		typedef typename Iterator::Ref Ref;
		typedef typename Iterator::Ptr Ptr;
		typedef ReverseListIterator<Iterator> Self;
	public:
		//
		// 构造
		ReverseListIterator(Iterator it)
			: _it(it)
		{}

		//
		// 具有指针类似行为
		Ref operator*()
		{
			Iterator temp(_it);
			--temp;
			return *temp;
		}

		Ptr operator->()
		{
			return &(operator*());
		}

		//
		// 迭代器支持移动
		Self& operator++()
		{
			--_it;
			return *this;
		}

		Self operator++(int)
		{
			Self temp(*this);
			--_it;
			return temp;
		}

		Self& operator--()
		{
			++_it;
			return *this;
		}

		Self operator--(int)
		{
			Self temp(*this);
			++_it;
			return temp;
		}

		//
		// 迭代器支持比较
		bool operator!=(const Self& l)const
		{
			return _it != l._it;
		}

		bool operator==(const Self& l)const
		{
			return _it != l._it;
		}

		Iterator _it;
	};

	template<class T>
	class list
	{
		typedef ListNode<T> Node;

	public:
		// 正向迭代器
		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T&> const_iterator;

		// 反向迭代器
		typedef ReverseListIterator<iterator> reverse_iterator;
		typedef ReverseListIterator<const_iterator> const_reverse_iterator;
	public:
		///
		// List的构造
		list()
		{
			CreateHead();
		}

		list(int n, const T& value = T())
		{
			CreateHead();
			for (int i = 0; i < n; ++i)
				push_back(value);
		}

		template <class Iterator>
		list(Iterator first, Iterator last)
		{
			CreateHead();
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		list(const list<T>& l)
		{
			CreateHead();

			// 用l中的元素构造临时的temp,然后与当前对象交换
			list<T> temp(l.begin(), l.end());
			this->swap(temp);
		}

		list<T>& operator=(list<T> l)
		{
			this->swap(l);
			return *this;
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		///
		// List的迭代器
		iterator begin() 
		{ 
			return iterator(_head->_next); 
		}

		iterator end() 
		{ 
			return iterator(_head); 
		}

		const_iterator begin()const 
		{ 
			return const_iterator(_head->_next); 
		}

		const_iterator end()const
		{ 
			return const_iterator(_head); 
		}

		reverse_iterator rbegin()
		{
			return reverse_iterator(end());
		}

		reverse_iterator rend()
		{
			return reverse_iterator(begin());
		}

		const_reverse_iterator rbegin()const
		{
			return const_reverse_iterator(end());
		}

		const_reverse_iterator rend()const
		{
			return const_reverse_iterator(begin());
		}

		///
		// List的容量相关
		size_t size()const
		{
			Node* cur = _head->_next;
			size_t count = 0;
			while (cur != _head)
			{
				count++;
				cur = cur->_next;
			}

			return count;
		}

		bool empty()const
		{
			return _head->_next == _head;
		}

		void resize(size_t newsize, const T& data = T())
		{
			size_t oldsize = size();
			if (newsize <= oldsize)
			{
				// 有效元素个数减少到newsize
				while (newsize < oldsize)
				{
					pop_back();
					oldsize--;
				}
			}
			else
			{
				while (oldsize < newsize)
				{
					push_back(data);
					oldsize++;
				}
			}
		}
		
		// List的元素访问操作
		// 注意:List不支持operator[]
		T& front()
		{
			return _head->_next->_val;
		}

		const T& front()const
		{
			return _head->_next->_val;
		}

		T& back()
		{
			return _head->_prev->_val;
		}

		const T& back()const
		{
			return _head->_prev->_val;
		}

		
		// List的插入和删除
		void push_back(const T& val) 
		{ 
			insert(end(), val); 
		}

		void pop_back() 
		{ 
			erase(--end()); 
		}

		void push_front(const T& val) 
		{ 
			insert(begin(), val); 
		}

		void pop_front() 
		{ 
			erase(begin()); 
		}

		// 在pos位置前插入值为val的节点
		iterator insert(iterator pos, const T& val)
		{
			Node* pNewNode = new Node(val);
			Node* pCur = pos._node;
			// 先将新节点插入
			pNewNode->_prev = pCur->_prev;
			pNewNode->_next = pCur;
			pNewNode->_prev->_next = pNewNode;
			pCur->_prev = pNewNode;
			return iterator(pNewNode);
		}

		// 删除pos位置的节点,返回该节点的下一个位置
		iterator erase(iterator pos)
		{
			// 找到待删除的节点
			Node* pDel = pos._node;
			Node* pRet = pDel->_next;

			// 将该节点从链表中拆下来并删除
			pDel->_prev->_next = pDel->_next;
			pDel->_next->_prev = pDel->_prev;
			delete pDel;

			return iterator(pRet);
		}

		void clear()
		{
			Node* cur = _head->_next;
			
			// 采用头删除删除
			while (cur != _head)
			{
				_head->_next = cur->_next;
				delete cur;
				cur = _head->_next;
			}

			_head->_next = _head->_prev = _head;
		}

		void swap(bite::list<T>& l)
		{
			std::swap(_head, l._head);
		}

	private:
		void CreateHead()
		{
			_head = new Node;
			_head->_prev = _head;
			_head->_next = _head;
		}
	private:
		Node* _head;
	};
}


///
// 对模拟实现的list进行测试
// 正向打印链表
template<class T>
void PrintList(const bite::list<T>& l)
{
	auto it = l.begin();
	while (it != l.end())
	{
		cout << *it << " ";
		++it;
	}

	cout << endl;
}

// 测试List的构造
void TestBiteList1()
{
	bite::list<int> l1;
	bite::list<int> l2(10, 5);
	PrintList(l2);

	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	bite::list<int> l3(array, array + sizeof(array) / sizeof(array[0]));
	PrintList(l3);

	bite::list<int> l4(l3);
	PrintList(l4);

	l1 = l4;
	PrintList(l1);
}

// PushBack()/PopBack()/PushFront()/PopFront()
void TestBiteList2()
{
	// 测试PushBack与PopBack
	bite::list<int> l;
	l.push_back(1);
	l.push_back(2);
	l.push_back(3);
	PrintList(l);

	l.pop_back();
	l.pop_back();
	PrintList(l);

	l.pop_back();
	cout << l.size() << endl;

	// 测试PushFront与PopFront
	l.push_front(1);
	l.push_front(2);
	l.push_front(3);
	PrintList(l);

	l.pop_front();
	l.pop_front();
	PrintList(l);

	l.pop_front();
	cout << l.size() << endl;
}

// 测试insert和erase
void TestBiteList3()
{
	int array[] = { 1, 2, 3, 4, 5 };
	bite::list<int> l(array, array + sizeof(array) / sizeof(array[0]));

	auto pos = l.begin();
	l.insert(l.begin(), 0);
	PrintList(l);

	++pos;
	l.insert(pos, 2);
	PrintList(l);

	l.erase(l.begin());
	l.erase(pos);
	PrintList(l);

	// pos指向的节点已经被删除,pos迭代器失效
	cout << *pos << endl;

	auto it = l.begin();
	while (it != l.end())
	{
		it = l.erase(it);
	}
	cout << l.size() << endl;
}

// 测试反向迭代器
void TestBiteList4()
{
	int array[] = { 1, 2, 3, 4, 5 };
	bite::list<int> l(array, array + sizeof(array) / sizeof(array[0]));

	auto rit = l.rbegin();
	while (rit != l.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	const bite::list<int> cl(l);
	auto crit = l.rbegin();
	while (crit != l.rend())
	{
		cout << *crit << " ";
		++crit;
	}
	cout << endl;
}

2.2 list****的反向迭代器

通过前面例子知道,反向迭代器的 ++ 就是正向迭代器的 -- ,反向迭代器的 -- 就是正向迭代器的 ++ ,因此反向迭代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可。

template<class Iterator>
class ReverseListIterator
{
 // 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态成员变量
 // 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
 // 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:
 typedef typename Iterator::Ref Ref;
 typedef typename Iterator::Ptr Ptr;
 typedef ReverseListIterator<Iterator> Self;
public:
 //
 // 构造
 ReverseListIterator(Iterator it): _it(it){}
 //
 // 具有指针类似行为
 Ref operator*(){
 Iterator temp(_it);
 --temp;
 return *temp;
 }
 Ptr operator->(){ return &(operator*());}
 //
 // 迭代器支持移动
 Self& operator++(){
--_it;
 return *this;
 }
 Self operator++(int){
 Self temp(*this);
 --_it;
 return temp;
 }
 Self& operator--(){
 ++_it;
 return *this;
 }
 Self operator--(int)
 {
 Self temp(*this);
 ++_it;
 return temp;
 }
 //
 // 迭代器支持比较
 bool operator!=(const Self& l)const{ return _it != l._it;}
 bool operator==(const Self& l)const{ return _it != l._it;}
 Iterator _it;
};
相关推荐
只做开心事40 分钟前
C++之红黑树模拟实现
开发语言·c++
程序员老冯头2 小时前
第十五章 C++ 数组
开发语言·c++·算法
程序猿会指北3 小时前
【鸿蒙(HarmonyOS)性能优化指南】启动分析工具Launch Profiler
c++·性能优化·harmonyos·openharmony·arkui·启动优化·鸿蒙开发
无 证明7 小时前
new 分配空间;引用
数据结构·c++
别NULL11 小时前
机试题——疯长的草
数据结构·c++·算法
CYBEREXP200812 小时前
MacOS M3源代码编译Qt6.8.1
c++·qt·macos
yuanbenshidiaos12 小时前
c++------------------函数
开发语言·c++
yuanbenshidiaos12 小时前
C++----------函数的调用机制
java·c++·算法
tianmu_sama13 小时前
[Effective C++]条款38-39 复合和private继承
开发语言·c++
羚羊角uou13 小时前
【C++】优先级队列以及仿函数
开发语言·c++