yolo笔记

目录

输入端

参考:https://zhuanlan.zhihu.com/p/172121380

Mosaic数据增强

随机的仿射变换

数据增强Copy-paste

有分割数据集时

数据增强- MixUp

按一定的透明程度混合生成一张图片;

数据增强- Albumentations

参考:https://blog.csdn.net/weixin_45942927/article/details/124529291

空域滤波

为图像平滑(去噪声)和图像锐化(突出轮廓)

均值滤波:图像去噪的同时也破坏了图像的细节部分

中值滤波:可以保护图像尖锐的边缘,选择适当的点来替代污染点的值,所以处理效果好,对椒盐噪声表现较好,对高斯噪声表现较差。

直方图均衡化

可提高图像的对比度

以及改变图片质量等等

数据增强- Augment HSV (Hue, Saturation, Value)色度、饱和度、浓度

数据增强- Random horizontal flip

随机水平翻转

自适应锚框计算

自适应图片缩放

Backbone

Focus结构

将Focus模块替换成了6x6的普通卷积层。

两者功能相同,但后者效率更高。

CSP结构

CSP结构

Neck

损失函数


小目标

中等目标

大目标

小型目标更难预测,所以将小型目标的超参设置大一些

参考:https://zhuanlan.zhihu.com/p/143747206

IOU_Loss

当预测框和目标框不相交时,IOU=0,无法反应两个框距离的远近,此时损失函数不可导,IOU_Loss无法优化两个框不相交的情况。

GIOU_Loss


DIOU_Loss


CIOU_loss

训练策略

➢Multi-scale training(0.5~1.5x) 320大小图片会缩放为0.5到1.5倍

➢AutoAnchor(For training custom data)

➢Warmup and Cosine LR scheduler

学习率从一个非常小的值慢慢增长到设置的初始的学习率

用cos的方法去降低学习率

➢EMA(Exponential Moving Average)

将学习率加上一个动量

➢Mixed precision

混合精度训练

➢Evolve hyper- parameters

消除Grid敏感度


梯度爆炸

匹配正样本

anchor_t最大为4(缩放因子设置为0~4)

在0.25~4的区间内就算匹配成功

相关推荐
谅望者17 分钟前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
iiiiii111 小时前
【论文阅读笔记】多实例学习方法 Diverse Density(DD):在特征空间中寻找正概念的坐标
论文阅读·人工智能·笔记·机器学习·ai·学习方法·多实例学习
inputA1 小时前
【LwIP源码学习8】netbuf源码分析
android·c语言·笔记·嵌入式硬件·学习
JM丫1 小时前
内网理论知识总结
笔记·网络安全
d111111111d2 小时前
STM32外设学习-I2C(细节)--学习笔记
笔记·stm32·单片机·嵌入式硬件·学习
( ˶˙⚇˙˶ )୨⚑︎2 小时前
【学习笔记】DiffFNO: Diffusion Fourier Neural Operator
笔记·神经网络·学习
ModestCoder_2 小时前
【学习笔记】Diffusion Policy for Robotics
论文阅读·人工智能·笔记·学习·机器人·强化学习·具身智能
im_AMBER4 小时前
Leetcode 57
笔记·学习·算法·leetcode
im_AMBER4 小时前
Leetcode 58 | 附:滑动窗口题单
笔记·学习·算法·leetcode
伯明翰java4 小时前
Redis学习笔记-List列表(2)
redis·笔记·学习