yolo笔记

目录

输入端

参考:https://zhuanlan.zhihu.com/p/172121380

Mosaic数据增强

随机的仿射变换

数据增强Copy-paste

有分割数据集时

数据增强- MixUp

按一定的透明程度混合生成一张图片;

数据增强- Albumentations

参考:https://blog.csdn.net/weixin_45942927/article/details/124529291

空域滤波

为图像平滑(去噪声)和图像锐化(突出轮廓)

均值滤波:图像去噪的同时也破坏了图像的细节部分

中值滤波:可以保护图像尖锐的边缘,选择适当的点来替代污染点的值,所以处理效果好,对椒盐噪声表现较好,对高斯噪声表现较差。

直方图均衡化

可提高图像的对比度

以及改变图片质量等等

数据增强- Augment HSV (Hue, Saturation, Value)色度、饱和度、浓度

数据增强- Random horizontal flip

随机水平翻转

自适应锚框计算

自适应图片缩放

Backbone

Focus结构

将Focus模块替换成了6x6的普通卷积层。

两者功能相同,但后者效率更高。

CSP结构

CSP结构

Neck

损失函数


小目标

中等目标

大目标

小型目标更难预测,所以将小型目标的超参设置大一些

参考:https://zhuanlan.zhihu.com/p/143747206

IOU_Loss

当预测框和目标框不相交时,IOU=0,无法反应两个框距离的远近,此时损失函数不可导,IOU_Loss无法优化两个框不相交的情况。

GIOU_Loss


DIOU_Loss


CIOU_loss

训练策略

➢Multi-scale training(0.5~1.5x) 320大小图片会缩放为0.5到1.5倍

➢AutoAnchor(For training custom data)

➢Warmup and Cosine LR scheduler

学习率从一个非常小的值慢慢增长到设置的初始的学习率

用cos的方法去降低学习率

➢EMA(Exponential Moving Average)

将学习率加上一个动量

➢Mixed precision

混合精度训练

➢Evolve hyper- parameters

消除Grid敏感度


梯度爆炸

匹配正样本

anchor_t最大为4(缩放因子设置为0~4)

在0.25~4的区间内就算匹配成功

相关推荐
循环过三天42 分钟前
3-1 PID算法改进(积分部分)
笔记·stm32·单片机·学习·算法·pid
之歆1 小时前
Python-封装和解构-set及操作-字典及操作-解析式生成器-内建函数迭代器-学习笔记
笔记·python·学习
DKPT3 小时前
Java组合模式实现方式与测试方法
java·笔记·学习·设计模式·组合模式
受之以蒙3 小时前
Rust & WASM 之 wasm-bindgen 基础:让 Rust 与 JavaScript 无缝对话
前端·笔记·rust
茫忙然4 小时前
【WEB】Polar靶场 6-10题 详细笔记
笔记
eric*16884 小时前
尚硅谷张天禹老师课程配套笔记
前端·vue.js·笔记·vue·尚硅谷·张天禹·尚硅谷张天禹
Allen_LVyingbo5 小时前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
岑梓铭5 小时前
考研408《计算机组成原理》复习笔记,第三章(3)——多模块存储器
笔记·考研·408·计算机组成原理
wu27905 小时前
Liunx 操作系统笔记4
笔记
菜菜why5 小时前
MSPM0G3507学习笔记(一) 重置版:适配逐飞库的ti板环境配置
笔记·学习·电赛·嵌入式软件·mspm0