yolo笔记

目录

输入端

参考:https://zhuanlan.zhihu.com/p/172121380

Mosaic数据增强

随机的仿射变换

数据增强Copy-paste

有分割数据集时

数据增强- MixUp

按一定的透明程度混合生成一张图片;

数据增强- Albumentations

参考:https://blog.csdn.net/weixin_45942927/article/details/124529291

空域滤波

为图像平滑(去噪声)和图像锐化(突出轮廓)

均值滤波:图像去噪的同时也破坏了图像的细节部分

中值滤波:可以保护图像尖锐的边缘,选择适当的点来替代污染点的值,所以处理效果好,对椒盐噪声表现较好,对高斯噪声表现较差。

直方图均衡化

可提高图像的对比度

以及改变图片质量等等

数据增强- Augment HSV (Hue, Saturation, Value)色度、饱和度、浓度

数据增强- Random horizontal flip

随机水平翻转

自适应锚框计算

自适应图片缩放

Backbone

Focus结构

将Focus模块替换成了6x6的普通卷积层。

两者功能相同,但后者效率更高。

CSP结构

CSP结构

Neck

损失函数


小目标

中等目标

大目标

小型目标更难预测,所以将小型目标的超参设置大一些

参考:https://zhuanlan.zhihu.com/p/143747206

IOU_Loss

当预测框和目标框不相交时,IOU=0,无法反应两个框距离的远近,此时损失函数不可导,IOU_Loss无法优化两个框不相交的情况。

GIOU_Loss


DIOU_Loss


CIOU_loss

训练策略

➢Multi-scale training(0.5~1.5x) 320大小图片会缩放为0.5到1.5倍

➢AutoAnchor(For training custom data)

➢Warmup and Cosine LR scheduler

学习率从一个非常小的值慢慢增长到设置的初始的学习率

用cos的方法去降低学习率

➢EMA(Exponential Moving Average)

将学习率加上一个动量

➢Mixed precision

混合精度训练

➢Evolve hyper- parameters

消除Grid敏感度


梯度爆炸

匹配正样本

anchor_t最大为4(缩放因子设置为0~4)

在0.25~4的区间内就算匹配成功

相关推荐
firewood20242 分钟前
共射三极管放大电路相关情况分析
笔记·学习
Hello_Embed18 分钟前
libmodbus STM32 主机实验(USB 串口版)
笔记·stm32·学习·嵌入式·freertos·modbus
risc12345634 分钟前
思维脚手架
笔记
risc12345640 分钟前
只身走过多少的岁月,弹指一梦不过一瞬间
笔记
小陈phd1 小时前
多模态大模型学习笔记(一)——机器学习入门:监督/无监督学习核心任务全解析
笔记·学习·机器学习
崎岖Qiu1 小时前
【计算机网络 | 第九篇】PPP:点对点协议
网络·笔记·计算机网络·ppp
听麟2 小时前
HarmonyOS 6.0+ PC端虚拟仿真训练系统开发实战:3D引擎集成与交互联动落地
笔记·深度学习·3d·华为·交互·harmonyos
一个人旅程~2 小时前
我存在吗?你存在吗?
笔记·程序人生·电脑·ai写作
xqqxqxxq2 小时前
Java IO 核心:BufferedReader/BufferedWriter & PrintStream/PrintWriter 技术笔记
java·笔记·php
第七序章2 小时前
【Linux学习笔记】初识Linux —— 理解gcc编译器
linux·运维·服务器·开发语言·人工智能·笔记·学习