积跬步至千里 || 数学基础、算法与编程

数学基础、算法与编程

1. BAP 技能

BAP 技能是指基础(Basic)、算法(Algorithm)和编程(Programm)三种基本技能的深度融合。理工科以数学、算法与编程为根基,这三个相辅相成又各有区别。

  • (1)数学以线性代数为主要研究工具和部分微积分技术为手段,来实现优化的目标。

  • (2)算法是应用数学和各类数据分析方法的灵魂,搭建了数学与应用领域的之间的桥梁,通常是一种真实解的逼近过程,其中主要涉及到矩阵的运算。

  • (3)编程泛指一切的计算机语言,通过循环迭代的方式编制出计算过程,如Matlab、Python、C++等,其中会有众多的库可以调用,如scikit-learn、CVX优化库、OpenCV图像处理库等等。

注意:算法和编程是两个严格区分的领域,算法需要深厚的数学功底,编程需要的是简单逻辑。

2. 传统算法

一类常见的算法是误差项 f ( x , w ) f(\boldsymbol{x},\boldsymbol{w}) f(x,w) 和复杂度测度项 g ( w ) g(\boldsymbol{w}) g(w) 的折衷,形如

min ⁡ w    f ( x , w ) + g ( w ) \min_{\boldsymbol{w}}\;f(\boldsymbol{x},\boldsymbol{w})+g(\boldsymbol{w}) wminf(x,w)+g(w)

常见的误差项,又称损失函数有以下几种(以回归问题为例)

  • 平方损失

f ( x , w ) = ∥ X w − b ∥ 2 2 = ∑ i ( w i x i − b i ) 2 f(\boldsymbol{x},\boldsymbol{w})=\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_2^2=\sum_i(w_ix_i-b_i)^2 f(x,w)=∥Xw−b∥22=i∑(wixi−bi)2

  • 绝对值损失

f ( x , w ) = ∥ X w − b ∥ 1 = ∑ i ∣ b i − w i x i ∣ f(\boldsymbol{x},\boldsymbol{w})=\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_1=\sum_i\Big\vert b_i-w_ix_i\Big\vert f(x,w)=∥Xw−b∥1=i∑ bi−wixi

  • Hubber 损失

Huber = { 1 2 e i 2 ∣ e i ∣ < δ δ ∣ e i ∣ − 1 2 δ 2 Otherwise \text{Huber}=\left\{ \begin{array}{lcl} \frac{1}{2}e_i^2 & & \vert e_i\vert<\delta\\ \delta\vert e_i\vert -\frac{1}{2}\delta^2 & & \text{Otherwise} \end{array} \right. Huber={21ei2δ∣ei∣−21δ2∣ei∣<δOtherwise

python 复制代码
# huber 损失
def huber(e, delta):
    loss = np.where(np.abs(e) < delta , 0.5*(e**2), delta*np.abs(e) - 0.5*(delta**2))
    return loss

import numpy as np
import matplotlib.pyplot as plt

e = np.arange(0,5,0.1)
z1 = 0.5*e**2
z2 = np.abs(e)
z3 = huber(e,1)
z4 = np.log(1+np.abs(e))

plt.plot(e,z1,label='L2')
plt.plot(e,z2,label='L1')
plt.plot(e,z3,label='Huber')
plt.plot(e,z4,label='Hx')
plt.title('Loss Function')
plt.axis([0,5,0,12])
plt.legend()
plt.xlabel('e')
plt.ylabel('Eerror')
plt.show()

常见的目标函数

min ⁡ w    ∥ X w − b ∥ 2 2 + ∥ w ∥ 2 2 \min_{\boldsymbol{w}}\;\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_2^2+\Vert \boldsymbol{w}\Vert_2^2 wmin∥Xw−b∥22+∥w∥22

min ⁡ w    ∥ X w − b ∥ 2 2 + ∥ w ∥ 1 \min_{\boldsymbol{w}}\;\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_2^2+\Vert \boldsymbol{w}\Vert_1 wmin∥Xw−b∥22+∥w∥1

min ⁡ w    ∥ X w − b ∥ 1 \min_{\boldsymbol{w}}\;\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_1 wmin∥Xw−b∥1

min ⁡ w    ∥ X − U V T ∥ F 2 ,        s . t .      U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_F^2,\;\;\;s.t.\;\;U\geq0,V\geq 0 wmin∥X−UVT∥F2,s.t.U≥0,V≥0

min ⁡ w    ∥ X − U V T ∥ 1 ,        s . t .      U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_1,\;\;\;s.t.\;\;U\geq0,V\geq 0 wmin∥X−UVT∥1,s.t.U≥0,V≥0

min ⁡ w    ∥ X − U V T ∥ 2 , 1 ,        s . t .      U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_{2,1},\;\;\;s.t.\;\;U\geq0,V\geq 0 wmin∥X−UVT∥2,1,s.t.U≥0,V≥0

min ⁡ w    ∥ X − U V T ∥ 2 , 1 + ∥ U ∥ 1 ,        s . t .      U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_{2,1}+\Vert U\Vert_1,\;\;\;s.t.\;\;U\geq0,V\geq 0 wmin∥X−UVT∥2,1+∥U∥1,s.t.U≥0,V≥0

min ⁡ w    ∥ X − U V T ∥ 2 , 1 + ∥ U ∥ ∗ ,        s . t .      U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_{2,1}+\Vert U\Vert_*,\;\;\;s.t.\;\;U\geq0,V\geq 0 wmin∥X−UVT∥2,1+∥U∥∗,s.t.U≥0,V≥0

可通过一些优化工具箱或者优化工具进行求解

3. 网络优化

通过神经网络或者深度学习进行优化

相关推荐
GuGu20246 分钟前
新手刷题对内存结构与形象理解的冲突困惑
算法
汤永红8 分钟前
week4-[二维数组]平面上的点
c++·算法·平面·信睡奥赛
无风听海14 分钟前
行向量和列向量在神经网络应用中的选择
人工智能·深度学习·神经网络·行向量·列向量
晴空闲雲25 分钟前
数据结构与算法-字符串、数组和广义表(String Array List)
数据结构·算法
一点一木27 分钟前
主流 AI 提示词优化工具推荐(2025 全面对比指南)
人工智能·openai·ai编程
全栈小535 分钟前
【AI编程】如何快速通过AI IDE集成开发工具来生成一个简易留言板系统
ide·人工智能·ai编程
能力越小责任越小YA1 小时前
服务器(Linux)新账户搭建Pytorch深度学习环境
人工智能·pytorch·深度学习·环境搭建
小五1271 小时前
机器学习-线性回归
人工智能·机器学习
攻城狮7号2 小时前
昆仑万维开源 Matrix-3D大模型,正在开启“造物主”模式
人工智能·matrix-3d·昆仑万维开源大模型
A7bert7772 小时前
【YOLOv5部署至RK3588】模型训练→转换RKNN→开发板部署
c++·人工智能·python·深度学习·yolo·目标检测·机器学习