Python爬虫实战(三):爬取微博热搜

前言

在开始之前,我们需要了解一些基本的爬虫知识。Python爬虫是一种自动化获取网页内容的技术,可以模拟浏览器行为,获取网页源代码,并从中提取所需的信息。在爬取微博热搜榜单时,我们需要发送HTTP请求获取网页源代码,然后使用正则表达式或者解析库对源代码进行解析和提取。

爬取目标(效果展示)

在使用Python进行爬虫的过程中,经常需要获取微博热搜榜单的数据。微博热搜榜单是一个非常有价值的信息源,可以了解当前社会热点事件和用户关注度。本文将介绍使用Python爬取微博热搜榜单的方法。

效果展示

爬取的内容是:标题、榜单、热度值、新闻类型、时间戳、url地址等

准备工作

我用的是python3.8,VScode编辑器,所需的库有:requests、etree、time

开头导入所需用到的导入的库

python 复制代码
python
复制代码
import requests # python基础爬虫库
from lxml import etree # 可以将网页转换为Elements对象
import time # 防止爬取过快可以睡眠一秒

建表

python 复制代码
CREATE TABLE "WB_HotList" (
	"id" INT IDENTITY(1,1) PRIMARY key,
	"batch" NVARCHAR(MAX),
	"daydate" SMALLDATETIME,
	"star_word" NVARCHAR(MAX),
	"title" NVARCHAR(MAX),
	"category" NVARCHAR(MAX),
	"num" NVARCHAR(MAX),
	"subject_querys" NVARCHAR(MAX),
	"flag" NVARCHAR(MAX),
	"icon_desc" NVARCHAR(MAX),
	"raw_hot" NVARCHAR(MAX),
	"mid" NVARCHAR(MAX),
	"emoticon" NVARCHAR(MAX),
	"icon_desc_color" NVARCHAR(MAX),
	"realpos" NVARCHAR(MAX),
	"onboard_time" SMALLDATETIME,
	"topic_flag" NVARCHAR(MAX),
	"ad_info" NVARCHAR(MAX),
	"fun_word" NVARCHAR(MAX),
	"note" NVARCHAR(MAX),
	"rank" NVARCHAR(MAX),
	"url" NVARCHAR(MAX)	
)

为防止,字段给的不够,直接给个MAX!

代码分析

先讲讲我的整体思路在逐步分析:

  • 第一步:发送请求,获取网页信息
  • 第二步:解析数据,提取我们所需要的数据
  • 第三步:添加入库批次号
  • 第四步:把数据存入数据库

第一步

发送请求,获取网页信息

提供了数据的接口,所以我们直接访问接口就行,如下图(json格式):

python 复制代码
# 接口地址:https://weibo.com/ajax/statuses/hot_band
sql 复制代码
def __init__(self) :
	self.url = "https://weibo.com/ajax/statuses/hot_band"
	self.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36"}
# 发送请求,获取相应 
def parse_url(self):
	response = requests.get(self.url,headers=self.headers)
	time.sleep(2) # 休息两秒
	
	return response.content.decode()

第二步

解析数据,提取我们所需要的数据

接口中的数据格式化如下(只需提取我们所需要的):

sql 复制代码
for i in range(50):
	ban_list = json_data['data']['band_list'][i]
	batch = f'第{a}批'
	try:
	    star_word = ban_list['star_word']
	except Exception as e:
	    print(e)
	try:
	    title = ban_list['word']
	except Exception as e:
	    print(e)
	try:
	    category = ban_list['category']
	except Exception as e:
	    print(e)
	try:
	    num = ban_list['num']
	except Exception as e:
	    print(e)
	try:
	    subject_querys = ban_list['subject_querys']
	except Exception as e:
	    print(e)
	try:
	    flag = ban_list['flag']
	except Exception as e:
	    print(e)
	try:
	    icon_desc = ban_list['icon_desc']
	except Exception as e:
	    print(e)  
	try:
	    raw_hot = ban_list['raw_hot']
	except Exception as e:
	    print(e)      
	try:
	    mid = ban_list['mid']
	except Exception as e:
	    print(e) 
	try:
	    emoticon = ban_list['emoticon']
	except Exception as e:
	    print(e)
	try:
	    icon_desc_color = ban_list['icon_desc_color']
	except Exception as e:
	    print(e)
	try:
	    realpos = ban_list['realpos']
	except Exception as e:
	    print(e)
	try:
	    onboard_time = ban_list['onboard_time']
	    onboard_time = datetime.datetime.fromtimestamp(onboard_time)
	except Exception as e:
	    print(e)
	try:
	    topic_flag = ban_list['topic_flag']
	except Exception as e:
	    print(e)
	try:
	    ad_info = ban_list['ad_info']
	except Exception as e:
	    print(e)
	try:
	    fun_word = ban_list['fun_word']
	except Exception as e:
	    print(e)   
	try:
	    note = ban_list['note']
	except Exception as e:
	    print(e)      
	try:
	    rank = ban_list['rank'] + 1
	except Exception as e:
	    print(e) 
	try:
	    url = json_data['data']['band_list'][i]['mblog']['text']
	    url = re.findall('href="(.*?)"',url)[0]

第三步

数据库的batch用于判断,每次插入的批次(50个一批),如果爬虫断了,写个方法还能接着上次的批次

如图:

sql 复制代码
# 把数据库batch列存入列表并返回(用于判断批次号)
def batch(self):
	conn=pymssql.connect('.', 'sa', 'yuan427', 'test')
	cursor=conn.cursor()
	
	cursor.execute("select batch from WB_HotList") #向数据库发送SQL命令
	rows=cursor.fetchall()
	batchlist=[]
	for list in rows:
	    batchlist.append(list[0]) 
	
	return batchlist    

第四步

把数据存入数据库

sql 复制代码
# 连接数据库服务,创建游标对象
db = pymssql.connect('.', 'sa', 'yuan427', 'test') #服务器名,账户,密码,数据库名
if db:
    print("连接成功!")    
cursor= db.cursor()

try:
	# 插入sql语句
	sql = "insert into test4(batch,daydate,star_word,title,category,num,subject_querys,flag,icon_desc,raw_hot,mid,emoticon,icon_desc_color,realpos,onboard_time, \
	        topic_flag,ad_info,fun_word,note,rank,url) values (%s,getdate(),%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"
	
	# 执行插入操作
	cursor.execute(sql,(batch,star_word,title,category,num,subject_querys,flag,icon_desc,raw_hot,mid,emoticon,icon_desc_color,realpos,onboard_time,topic_flag,ad_info, \
	            fun_word,note,rank,url))
	db.commit()
	
	print('成功载入......' )
	
	except Exception as e:
	db.rollback()
	print(str(e))
    
# 关闭游标,断开数据库
cursor.close()
db.close()

完整代码

python 复制代码
import requests,pymssql,time,json,re,datetime
from threading import Timer

class Spider:
    def __init__(self) :
        self.url = "https://weibo.com/ajax/statuses/hot_band"
        self.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36"}

    # 发送请求,获取相应 
    def parse_url(self):
        response = requests.get(self.url,headers=self.headers)
        time.sleep(2)
        
        return response.content.decode()

    # 解析数据,入库
    def parse_data(self,data,a):
        json_data = json.loads(data)

        # 连接数据库服务,创建游标对象
        db = pymssql.connect('.', 'sa', 'yuan427', 'test') #服务器名,账户,密码,数据库名   
        cursor= db.cursor()
     
        for i in range(50):
            ban_list = json_data['data']['band_list'][i]
            
            
            batch = f'第{a}批'
            
            try:
                star_word = ban_list['star_word']
            except Exception as e:
                print(e)
            
            
            try:
                title = ban_list['word']
            except Exception as e:
                print(e)

            try:
                category = ban_list['category']
            except Exception as e:
                print(e)
            
            try:
                num = ban_list['num']
            except Exception as e:
                print(e)
        
            try:
                subject_querys = ban_list['subject_querys']
            except Exception as e:
                print(e)

            try:
                flag = ban_list['flag']
            except Exception as e:
                print(e)

            try:
                icon_desc = ban_list['icon_desc']
            except Exception as e:
                print(e)  

            try:
                raw_hot = ban_list['raw_hot']
            except Exception as e:
                print(e)      
            
            try:
                mid = ban_list['mid']
            except Exception as e:
                print(e) 
            
            try:
                emoticon = ban_list['emoticon']
            except Exception as e:
                print(e)
            
            try:
                icon_desc_color = ban_list['icon_desc_color']
            except Exception as e:
                print(e)
            
            try:
                realpos = ban_list['realpos']
            except Exception as e:
                print(e)
            
            try:
                onboard_time = ban_list['onboard_time']
                onboard_time = datetime.datetime.fromtimestamp(onboard_time)
            except Exception as e:
                print(e)
            
            try:
                topic_flag = ban_list['topic_flag']
            except Exception as e:
                print(e)
            
            try:
                ad_info = ban_list['ad_info']
            except Exception as e:
                print(e)
            
            try:
                fun_word = ban_list['fun_word']
            except Exception as e:
                print(e)   
            
            try:
                note = ban_list['note']
            except Exception as e:
                print(e)      
        
            try:
                rank = ban_list['rank'] + 1
            except Exception as e:
                print(e) 
            
            try:
                url = json_data['data']['band_list'][i]['mblog']['text']
                url = re.findall('href="(.*?)"',url)[0]
            except Exception as e:
                print(e)
           
            try:
                # 插入sql语句
                sql = "insert into test4(batch,daydate,star_word,title,category,num,subject_querys,flag,icon_desc,raw_hot,mid,emoticon,icon_desc_color,realpos,onboard_time, \
                        topic_flag,ad_info,fun_word,note,rank,url) values (%s,getdate(),%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"

                # 执行插入操作
                cursor.execute(sql,(batch,star_word,title,category,num,subject_querys,flag,icon_desc,raw_hot,mid,emoticon,icon_desc_color,realpos,onboard_time,topic_flag,ad_info, \
                            fun_word,note,rank,url))
                db.commit()

                print('成功载入......' )
            
            except Exception as e:
                db.rollback()
                print(str(e))
            
        # 关闭游标,断开数据库
        cursor.close()
        db.close()
         
    # 把数据库batch列存入列表并返回(用于判断批次号)
    def batch(self):
        conn=pymssql.connect('.', 'sa', 'yuan427', 'test')

        cursor=conn.cursor()

        cursor.execute("select batch from WB_HotList") #向数据库发送SQL命令

        rows=cursor.fetchall()
        batchlist=[]
        for list in rows:
            batchlist.append(list[0]) 

        return batchlist    
             
    # 实现主要逻辑 
    def run(self, a):
        
        # 根据数据库批次号给定a的值
        batchlist = self.batch()
        if len(batchlist) != 0:
            batch = batchlist[len(batchlist) -1]
            a = re.findall('第(.*?)批',batch)
            a = int(a[0]) + 1

        data = self.parse_url()

        self.parse_data(data,a)
        a +=1
        # 定时调用
        t = Timer(1800, self.run, (a, )) # 1800表示1800秒,半小时调用一次
        t.start()

    
if __name__ == "__main__": 
    spider = Spider()
    spider.run(1)

启动

因为需要一直运行,所以就在 cmd 挂着

运行成功后,去数据库看看:

总结

总之,使用Python爬取微博热搜榜单是一种获取有价值信息的方法。在实际应用中,我们需要根据具体情况选择合适的爬虫方法,并遵守相关法律法规和网站的使用规定。希望本文对你理解和使用Python爬取微博热搜榜单有所帮助。

相关推荐
测试杂货铺4 分钟前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
艾派森8 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
小码的头发丝、34 分钟前
Django中ListView 和 DetailView类的区别
数据库·python·django
Chef_Chen1 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
千澜空2 小时前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
斯凯利.瑞恩2 小时前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
yannan201903132 小时前
【算法】(Python)动态规划
python·算法·动态规划
蒙娜丽宁2 小时前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev2 小时前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子3 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn