更好的 3D 网格,从重建到生成 AI

这篇文章最初发表在 NVIDIA 技术博客上。

下一代人工智能管道在生成高保真 3D 模型方面取得了令人难以置信的成功,从生成与给定图像匹配的场景的重建,到生成交互式体验资产的生成人工智能管道。

这些生成的三维模型通常被提取为标准三角形网格。网格表示提供了许多好处,包括支持现有软件包、高级硬件加速和支持物理模拟。然而,并非所有网格都是相等的,这些好处只有在高质量的网格上才能实现。

NVIDIA 最近的研究发现了一种名为 FlexiCubes 的新方法,用于在 3D 管道中生成高质量网格,从而在一系列应用中提高质量。

FlexiCubes 网格生成

图 1。FlexiCube 重建的网格示例s

从重建到模拟,人工智能管道的共同组成部分是通过优化过程生成网格。在过程的每一步,表示都会更新,以更好地匹配所需的输出。

FlexiCubes 网格生成的新思想是引入额外的、灵活的参数来精确调整生成的网格。通过在优化过程中更新这些参数,大大提高了网格质量。

熟悉基于网格的管道的人过去可能使用行进立方体来提取网格。FlexiCubes 可以作为基于优化的 AI 管道中行进立方体的替代品。

图 2:FlexiCubes 高品质网眼布

FlexiCubes 通过摄影测量和生成 AI 等神经工作流生成高质量网格。

更好的网格,更好的 AI

FlexiCubes 网格提取改进了许多最近的 3D 网格生成管道的结果,生成了更高质量的网格,可以更好地表示复杂形状中的精细细节。

生成的网格也非常适合物理模拟,其中网格质量对于使模拟高效和稳健尤为重要。四面体网格已准备好用于开箱即用的物理模拟。

图 3。FlexiCubes 四面体网格示例

立即浏览 FlexiCubes

这项研究是 NVIDIA 在洛杉矶 SIGGRAPH 2023 上取得的一部分进展。想要了解更多关于新方法的信息,请参阅 Flexible Isosurface Extraction for Gradient-Based Mesh Optimization。您也可以在 FlexiCubes 项目页面上探索更多结果。

阅读原文

相关推荐
REDcker3 天前
Nvidia英伟达显卡型号发布史与架构演进详解
架构·gpu·显卡·nvidia·cuda·英伟达·演进
scott1985125 天前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
clorisqqq7 天前
黄仁勋 CES 2026 演讲笔记(part2 精华)
nvidia·黄仁勋·ces2026
扫地的小何尚7 天前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
@hdd8 天前
dcgmi diag报错Diagnostic can only be performed on a homogeneous group of GPUs.
nvidia·dcgm
墨风如雪10 天前
英伟达Rubin炸场:算力暴涨5倍,黄仁勋要让AI推理“白菜价”
aigc·nvidia
chinamaoge12 天前
NVIDIA大模型推理框架:TensorRT-LLM软件流程(三)trtllm-serve启动流程–HTTP Request
nvidia·大模型推理·tensorrt-llm
闻道且行之15 天前
Ubuntu 20.04 下 NVIDIA Tesla P40 驱动安装指南(核显桌面 + 计算卡分离方案)
linux·运维·ubuntu·nvidia·p40
AI视觉网奇17 天前
NVIDIA 生成key
笔记·nvidia
张火火isgudi17 天前
fedora43 安装 nvidia 驱动以及开启视频编解码硬件加速
linux·运维·视频编解码·nvidia