Apache Hudi初探(三)(与flink的结合)--flink写hudi的操作(真正的写数据)

背景

在之前的文章中Apache Hudi初探(二)(与flink的结合)--flink写hudi的操作(JobManager端的提交操作) 有说到写hudi数据会涉及到写hudi真实数据 以及写hudi元数据,这篇文章来说一下具体的实现

写hudi真实数据

这里的操作就是在HoodieFlinkWriteClient.upsert方法:

public List<WriteStatus> upsert(List<HoodieRecord<T>> records, String instantTime) {
    HoodieTable<T, List<HoodieRecord<T>>, List<HoodieKey>, List<WriteStatus>> table =
        initTable(WriteOperationType.UPSERT, Option.ofNullable(instantTime));
    table.validateUpsertSchema();
    preWrite(instantTime, WriteOperationType.UPSERT, table.getMetaClient());
    final HoodieWriteHandle<?, ?, ?, ?> writeHandle = getOrCreateWriteHandle(records.get(0), getConfig(),
        instantTime, table, records.listIterator());
    HoodieWriteMetadata<List<WriteStatus>> result = ((HoodieFlinkTable<T>) table).upsert(context, writeHandle, instantTime, records);
    if (result.getIndexLookupDuration().isPresent()) {
      metrics.updateIndexMetrics(LOOKUP_STR, result.getIndexLookupDuration().get().toMillis());
    }
    return postWrite(result, instantTime, table);
  }
  • initTable
    初始化HoodieFlinkTable

  • preWrite
    在这里几乎没什么操作

  • getOrCreateWriteHandle
    创建一个写文件的handle(假如这里创建的是FlinkMergeAndReplaceHandle ),这里会记录已有的文件路径,后续FlinkMergeHelper.runMerge 会从这里读取数
    注意该构造函数中的init方法,会创建一个ExternalSpillableMap类型的map来存储即将插入的记录,这在后续upsert中会用到

  • HoodieFlinkTable.upsert
    这里进行真正的upsert操作,会调用FlinkUpsertDeltaCommitActionExecutor.execute ,最终会调用到BaseFlinkCommitActionExecutor.execute ,从而调用到FlinkMergeHelper.newInstance().runMerge

      public void runMerge(HoodieTable<T, List<HoodieRecord<T>>, List<HoodieKey>, List<WriteStatus>> table,..) {
           final boolean externalSchemaTransformation = table.getConfig().shouldUseExternalSchemaTransformation();
           HoodieBaseFile baseFile = mergeHandle.baseFileForMerge();
           if (externalSchemaTransformation || baseFile.getBootstrapBaseFile().isPresent()) {
             readSchema = baseFileReader.getSchema();
             gWriter = new GenericDatumWriter<>(readSchema);
             gReader = new GenericDatumReader<>(readSchema, mergeHandle.getWriterSchemaWithMetaFields());
           } else {
             gReader = null;
             gWriter = null;
             readSchema = mergeHandle.getWriterSchemaWithMetaFields();
           }
           wrapper = new BoundedInMemoryExecutor<>(table.getConfig().getWriteBufferLimitBytes(), new IteratorBasedQueueProducer<>(readerIterator),
            Option.of(new UpdateHandler(mergeHandle)), record -> {
          if (!externalSchemaTransformation) {
            return record;
          }
          return transformRecordBasedOnNewSchema(gReader, gWriter, encoderCache, decoderCache, (GenericRecord) record);
        });
        wrapper.execute();
    
        。。。
        mergeHandle.close();
    
      }
    
    • externalSchemaTransformation=
      这里有hoodie.avro.schema.external.transformation配置(默认是false)用来把在之前schame下的数据转换为新的schema下的数据

    • wrapper.execute()
      这里会最终调用到upsertHandle.write(record) ,也就是UpdateHandler.consumeOneRecord 方法被调用的地方

       public void write(GenericRecord oldRecord) {
       ...
       if (keyToNewRecords.containsKey(key)) {
        if (combinedAvroRecord.isPresent() && combinedAvroRecord.get().equals(IGNORE_RECORD)) {
            copyOldRecord = true;
          } else if (writeUpdateRecord(hoodieRecord, oldRecord, combinedAvroRecord)) {
            copyOldRecord = false;
          }
          writtenRecordKeys.add(key); 
       }
       }
      

      如果keyToNewRecords 报班了对应的记录,也就是说会有uodate的操作的话,就插入新的数据,
      writeUpdateRecord 这里进行数据的更新,并用writtenRecordKeys记录插入的记录

    • mergeHandle.close()

       public List<WriteStatus> close() {
             writeIncomingRecords();
        ...
       }
       ...
       protected void writeIncomingRecords() throws IOException {
         // write out any pending records (this can happen when inserts are turned into updates)
         Iterator<HoodieRecord<T>> newRecordsItr = (keyToNewRecords instanceof ExternalSpillableMap)
             ? ((ExternalSpillableMap)keyToNewRecords).iterator() : keyToNewRecords.values().iterator();
         while (newRecordsItr.hasNext()) {
           HoodieRecord<T> hoodieRecord = newRecordsItr.next();
           if (!writtenRecordKeys.contains(hoodieRecord.getRecordKey())) {
             writeInsertRecord(hoodieRecord);
           }
         }
       }
      

      这里的writeIncomingRecords 会判断如果writtenRecordKeys没有包含该记录的话,就直接插入数据,而不是更新

总结一下upsert的关键点:

mergeHandle.close()才是真正的写数据(insert)的时候,在初始化handle的时候会把记录传导writtenRecordKeys中(在HoodieMergeHandle中的init方法)

mergeHandle的write() 方法会在写入数据的时候,如果发现有新的数据,则会写入新的数据(update)

写hudi元数据

这里的操作是StreamWriteOperatorCoordinator.notifyCheckpointComplete方法

public void notifyCheckpointComplete(long checkpointId) {
   ...
   final boolean committed = commitInstant(this.instant, checkpointId);
   ...
}
  ...
private boolean commitInstant(String instant, long checkpointId){
   ...
   doCommit(instant, writeResults);
   ...
}
  ...
private void doCommit(String instant, List<WriteStatus> writeResults) {
  // commit or rollback
  long totalErrorRecords = writeResults.stream().map(WriteStatus::getTotalErrorRecords).reduce(Long::sum).orElse(0L);
  long totalRecords = writeResults.stream().map(WriteStatus::getTotalRecords).reduce(Long::sum).orElse(0L);
  boolean hasErrors = totalErrorRecords > 0;

  if (!hasErrors || this.conf.getBoolean(FlinkOptions.IGNORE_FAILED)) {
    HashMap<String, String> checkpointCommitMetadata = new HashMap<>();
    if (hasErrors) {
      LOG.warn("Some records failed to merge but forcing commit since commitOnErrors set to true. Errors/Total="
          + totalErrorRecords + "/" + totalRecords);
    }

    final Map<String, List<String>> partitionToReplacedFileIds = tableState.isOverwrite
        ? writeClient.getPartitionToReplacedFileIds(tableState.operationType, writeResults)
        : Collections.emptyMap();
    boolean success = writeClient.commit(instant, writeResults, Option.of(checkpointCommitMetadata),
        tableState.commitAction, partitionToReplacedFileIds);
    if (success) {
      reset();
      this.ckpMetadata.commitInstant(instant);
      LOG.info("Commit instant [{}] success!", instant);
    } else {
      throw new HoodieException(String.format("Commit instant [%s] failed!", instant));
    }
  } else {
    LOG.error("Error when writing. Errors/Total=" + totalErrorRecords + "/" + totalRecords);
    LOG.error("The first 100 error messages");
    writeResults.stream().filter(WriteStatus::hasErrors).limit(100).forEach(ws -> {
      LOG.error("Global error for partition path {} and fileID {}: {}",
          ws.getGlobalError(), ws.getPartitionPath(), ws.getFileId());
      if (ws.getErrors().size() > 0) {
        ws.getErrors().forEach((key, value) -> LOG.trace("Error for key:" + key + " and value " + value));
      }
    });
    // Rolls back instant
    writeClient.rollback(instant);
    throw new HoodieException(String.format("Commit instant [%s] failed and rolled back !", instant));
  }
}

主要在commitInstant 涉及动的方法doCommit(instant, writeResults)

如果说没有错误发生的话,就继续下一步:

这里的提交过程和spark中一样,具体参考Apache Hudi初探(五)(与spark的结合)

其他

在flink和spark中新写入的文件是在哪里分配对一个的fieldId:

//Flink中
BucketAssignFunction 中processRecord getNewRecordLocation 分配新的 fieldId

//Spark中
BaseSparkCommitActionExecutor 中execute方法 中 handleUpsertPartition 涉及到的UpsertPartitioner getBucketInfo方法
其中UpsertPartitioner构造函数中 assignInserts 方法涉及到分配新的 fieldId
相关推荐
老周聊架构14 分钟前
聊聊Flink:Flink的状态管理
大数据·flink
筒栗子23 分钟前
复习打卡大数据篇——Hadoop HDFS 01
大数据·hadoop·hdfs
lovelin+v175030409662 小时前
智能电商:API接口如何驱动自动化与智能化转型
大数据·人工智能·爬虫·python
rpa_top2 小时前
RPA 助力电商:自动化商品信息上传,节省人力资源 —— 以影刀 RPA 为例【rpa.top】
大数据·前端·人工智能·自动化·rpa
ssxueyi6 小时前
Paimon 是什么?Apache Paimon简介
大数据·流数据·stream·数据湖·流批一体·apache paimon
Asiram_6 小时前
大数据机器学习与计算机视觉应用08:反向传播
大数据·机器学习·计算机视觉
Json_181790144807 小时前
淘系商品评论json数据示例参考,API接口系列
大数据·json·api
ssxueyi18 小时前
如何查看flink错误信息
大数据·flink
奥顺20 小时前
PHP与AJAX:实现动态网页的完美结合
大数据·mysql·开源·php
中东大鹅1 天前
分布式数据存储基础与HDFS操作实践
大数据·linux·hadoop·分布式·hbase