C# PaddleDetection yolo 印章检测

效果

项目

代码

复制代码
using OpenCvSharp;
using OpenCvSharp.Extensions;
using Sdcb.PaddleDetection;
using Sdcb.PaddleInference;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace PaddleDetection印章检测
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        Bitmap bmp;
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string img = "";

        double fontScale = 4D;
        int thickness = 4;
        LineTypes lineType = LineTypes.Link4;

        PaddleConfig paddleConfig;
        PaddleDetector d;
        String startupPath;
        float confidence = 0.90f;

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        StringBuilder sb = new StringBuilder();

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = Application.StartupPath;
            paddleConfig = PaddleConfig.FromModelDir(startupPath + "\\model\\");
            string configYmlPath = startupPath + "\\model\\infer_cfg.yml";
            d = new PaddleDetector(paddleConfig, configYmlPath, PaddleDevice.Mkldnn());
        }

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            img = ofd.FileName;
            bmp = new Bitmap(img);
            pictureBox1.Image = new Bitmap(img);
            textBox1.Text = "";
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (img == "")
            {
                return;
            }
            sb.Clear();
            Mat src = Cv2.ImRead(img);
            dt1 = DateTime.Now;
            DetectionResult[] r = d.Run(src);
            dt2 = DateTime.Now;
            Scalar scalar;

            for (int i = 0; i < r.Length; i++)
            {
                if (r[i].Confidence > confidence)
                {
                    scalar = Scalar.RandomColor();
                    Cv2.Rectangle(src, r[i].Rect, scalar, 4, LineTypes.Link8, 0);

                    Cv2.PutText(src, r[i].LabelName + "(" + r[i].Confidence + ")", new OpenCvSharp.Point(r[i].Rect.X + r[i].Rect.Width / 2, r[i].Rect.Y + r[i].Rect.Height / 2), HersheyFonts.HersheyComplex, fontScale, scalar, thickness, lineType, false);

                    sb.AppendLine(string.Format("{0}({1}) ({2},{3},{4},{5})",
                        r[i].LabelName
                        , r[i].Confidence
                        , r[i].Rect.Left
                        , r[i].Rect.Top
                        , r[i].Rect.Right
                        , r[i].Rect.Bottom
                        ));
                }
            }

            sb.AppendLine("耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();

            pictureBox2.Image = BitmapConverter.ToBitmap(src);
        }
    }
}

Demo下载

相关推荐
王哈哈^_^6 小时前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
深度学习lover6 小时前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别
Coovally AI模型快速验证6 小时前
视觉语言模型(VLM)深度解析:如何用它来处理文档
人工智能·yolo·目标跟踪·语言模型·自然语言处理·开源
王哈哈^_^8 小时前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
像风一样的男人@1 天前
python --两个文件夹文件名比对(yolo 图和label标注比对检查)
windows·python·yolo
AI纪元故事会2 天前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
Python图像识别2 天前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
Python图像识别2 天前
74_基于深度学习的垃圾桶垃圾溢出检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
AI浩2 天前
MHAF-YOLO:用于精确目标检测的多分支异构辅助融合YOLO
人工智能·yolo·目标检测
AI视觉网奇3 天前
yolo 获取异常样本 yolo 异常
开发语言·python·yolo