数学建模--非整数规划求解的Python实现

目录

1.算法流程简介

2.算法核心代码

3.算法效果展示

1.算法流程简介

复制代码
#非线性规划模型求解:
#我们采用通用的minimize函数来求解
#minimize(f,x,method,bounds,contrains)
#f是待求函数
#x是代求的自变量
#method是求解方法
#bounds是取值范围边界
#contrains是约束条件
"""
#Question:
        min f=x1^2+x2^2+x3^2+8
        s.t.:
            x1^2-x2^2+x3^2>=0
            x1+x2^2+x3^2<=20
            -x1-x2^2+2=0
            x2+2x3^2=3
            x1,x2,x3>=0 
"""
#具体流程如下所示:
#1.设置待求函数和约束条件
#2.处理边界约束问题
#3.代入计算求解最优值

2.算法核心代码

python 复制代码
#引用库和函数
import numpy as np
from scipy.optimize import minimize
from scipy import optimize as opt

#1.设置待求函数和约束条件
def cal_fun(x):
    return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+8
def cont1(x):
    return x[0] ** 2 - x[1] + x[2] ** 2#s.t.1
def cont2(x):
    return -(x[0] + x[1] ** 2 + x[2] ** 2 - 20)#s.t.2
def cont3(x):
	return -x[0] - x[1] ** 2 + 2#s.t.3
def cont4(x):
	return x[1] + 2 * x[2] ** 2 - 3#s.t.4

#2.处理边界约束问题
b=(0,None)
rbound=(b,b,b)

con1={'type':'ineq','fun':cont1}
con2={'type':'ineq','fun':cont2}
con3={'type':'eq','fun':cont3}
con4={'type':'eq','fun':cont4}
cons=([con1,con2,con3,con4])

#3.代入计算求解最优值
x=np.array([0,0,0])
ans=minimize(cal_fun,x,method='SLSQP',bounds=rbound,constraints=cons)
x_ans=ans.x
print("最优解:"+str(cal_fun(x_ans)))
print("最优解的方案是:x1="+str(x_ans[0]),"x2="+str(x_ans[1]))

3.算法效果展示

相关推荐
往日情怀酿做酒 V17639296382 分钟前
pytorch的介绍以及张量的创建
人工智能·pytorch·python
豌豆花下猫31 分钟前
Python 潮流周刊#110:JIT 编译器两年回顾,AI 智能体工具大爆发(摘要)
后端·python·ai
June bug1 小时前
【Python基础】变量、运算与内存管理全解析
开发语言·python·职场和发展·测试
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(几何变换--图像平移、图像旋转、放射变换、图像缩放、透视变换)
开发语言·人工智能·python·opencv·计算机视觉
蹦蹦跳跳真可爱5892 小时前
Python----循环神经网络(Transformer ----Layer-Normalization(层归一化))
人工智能·python·rnn·transformer
m0_625686552 小时前
Day58
python
夜阳朔2 小时前
Conda环境激活失效问题
人工智能·后端·python
Better Rose2 小时前
【2025 年第十五届 APMCM数学建模竞赛】B题 问题一、二模型建立与求解
数学建模
m0_723140232 小时前
Python训练营-Day49
开发语言·python
北风toto3 小时前
python学习DataFrame数据结构
数据结构·python·学习