Python自学:使用多进程处理 multiprocessing

1. 使用多进程执行函数

以下代码没有使用多进程。

python 复制代码
import time

start = time.perf_counter()

def do_something():
    print('Sleeping 1 second...')
    time.sleep(1)
    print('Done Sleep...')

do_something()
do_something()

finish = time.perf_counter()

print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 1 second...

Done Sleep...

Sleeping 1 second...

Done Sleep...

Finished in 2.03 second(s)

以下代码使用了多进程。

python 复制代码
import time
import multiprocessing


def do_something():
    print('Sleeping 1 second...')
    time.sleep(1)
    print('Done Sleep...')


if __name__ == '__main__':

    start = time.perf_counter()

    p1 = multiprocessing.Process(target=do_something)
    p2 = multiprocessing.Process(target=do_something)

    p1.start()
    p2.start()

    p1.join()
    p2.join()

    finish = time.perf_counter()

    print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 1 second...

Sleeping 1 second...

Done Sleep...

Done Sleep...

Finished in 1.07 second(s)

2. 使用loop创建多个进程,并在函数中传入参数。

python 复制代码
import time
import multiprocessing


def do_something(seconds):
    print(f'Sleeping {seconds} second(s)...')
    time.sleep(seconds)
    print('Done Sleep...')


if __name__ == '__main__':

    start = time.perf_counter()

    processes = []

    for _ in range(10):
        p = multiprocessing.Process(target=do_something, args=[1.5])
        p.start()
        processes.append(p)

    for process in processes:
        process.join()

    finish = time.perf_counter()

    print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Finished in 1.62 second(s)

3. 使用进程池实现多进程

python 复制代码
import time
import concurrent.futures


def do_something(seconds):
    print(f'Sleeping {seconds} second(s)...')
    time.sleep(seconds)
    return f'Done Sleep...{seconds}'


if __name__ == '__main__':

    start = time.perf_counter()

    with concurrent.futures.ProcessPoolExecutor() as executor:
        secs = [5, 4, 3, 2, 1]
        results = executor.map(do_something, secs)

        for result in results:
            print(result)

    finish = time.perf_counter()

    print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 5 second(s)...

Sleeping 4 second(s)...

Sleeping 3 second(s)...

Sleeping 2 second(s)...

Sleeping 1 second(s)...

Done Sleep...5

Done Sleep...4

Done Sleep...3

Done Sleep...2

Done Sleep...1

Finished in 5.14 second(s)

4. 使用多进程处理图片

以下代码展示了没有使用多进程处理图片

python 复制代码
import time
from PIL import Image, ImageFilter

img_names = [
    'photo-1516117172878-fd2c41f4a759.jpg',
    'photo-1532009324734-20a7a5813719.jpg',
    'photo-1524429656589-6633a470097c.jpg',
    'photo-1530224264768-7ff8c1789d79.jpg',
    'photo-1564135624576-c5c88640f235.jpg',
    'photo-1541698444083-023c97d3f4b6.jpg',
    'photo-1522364723953-452d3431c267.jpg',
    'photo-1493976040374-85c8e12f0c0e.jpg',
    'photo-1504198453319-5ce911bafcde.jpg',
    'photo-1530122037265-a5f1f91d3b99.jpg',
    'photo-1516972810927-80185027ca84.jpg',
    'photo-1550439062-609e1531270e.jpg',
    'photo-1549692520-acc6669e2f0c.jpg'
]

t1 = time.perf_counter()

size = (1200, 1200)

for img_name in img_names:
    img = Image.open(img_name)

    img = img.filter(ImageFilter.GaussianBlur(15))

    img.thumbnail(size)

    img.save(f'processed/{img_name}')
    print(f'{img_name} was processed...')

t2 = time.perf_counter()

print(f'Finished in {t2-t1} seconds')

输出为:

photo-1516117172878-fd2c41f4a759.jpg was processed...

photo-1532009324734-20a7a5813719.jpg was processed...

photo-1524429656589-6633a470097c.jpg was processed...

photo-1530224264768-7ff8c1789d79.jpg was processed...

photo-1564135624576-c5c88640f235.jpg was processed...

photo-1541698444083-023c97d3f4b6.jpg was processed...

photo-1522364723953-452d3431c267.jpg was processed...

photo-1493976040374-85c8e12f0c0e.jpg was processed...

photo-1504198453319-5ce911bafcde.jpg was processed...

photo-1530122037265-a5f1f91d3b99.jpg was processed...

photo-1516972810927-80185027ca84.jpg was processed...

photo-1550439062-609e1531270e.jpg was processed...

photo-1549692520-acc6669e2f0c.jpg was processed...

Finished in 13.196055100299418 seconds

使用多进程的方式处理图片

python 复制代码
import time
import concurrent.futures
from PIL import Image, ImageFilter

img_names = [
    'photo-1516117172878-fd2c41f4a759.jpg',
    'photo-1532009324734-20a7a5813719.jpg',
    'photo-1524429656589-6633a470097c.jpg',
    'photo-1530224264768-7ff8c1789d79.jpg',
    'photo-1564135624576-c5c88640f235.jpg',
    'photo-1541698444083-023c97d3f4b6.jpg',
    'photo-1522364723953-452d3431c267.jpg',
    'photo-1493976040374-85c8e12f0c0e.jpg',
    'photo-1504198453319-5ce911bafcde.jpg',
    'photo-1530122037265-a5f1f91d3b99.jpg',
    'photo-1516972810927-80185027ca84.jpg',
    'photo-1550439062-609e1531270e.jpg',
    'photo-1549692520-acc6669e2f0c.jpg'
]


def process_image(img_name):
    
    img = Image.open(img_name)

    img = img.filter(ImageFilter.GaussianBlur(15))

    img.thumbnail((1200, 1200))

    img.save(f'processed/{img_name}')
    print(f'{img_name} was processed...')

if __name__ == '__main__':
    t1 = time.perf_counter()

    with concurrent.futures.ProcessPoolExecutor() as executor:
        executor.map(process_image, img_names)

    t2 = time.perf_counter()

    print(f'Finished in {t2-t1} seconds')

输出为:

photo-1516117172878-fd2c41f4a759.jpg was processed...

photo-1516972810927-80185027ca84.jpg was processed...

photo-1524429656589-6633a470097c.jpg was processed...

photo-1522364723953-452d3431c267.jpg was processed...

photo-1532009324734-20a7a5813719.jpg was processed...

photo-1530122037265-a5f1f91d3b99.jpg was processed...

photo-1530224264768-7ff8c1789d79.jpg was processed...

photo-1564135624576-c5c88640f235.jpg was processed...

photo-1550439062-609e1531270e.jpg was processed...

photo-1541698444083-023c97d3f4b6.jpg was processed...

photo-1549692520-acc6669e2f0c.jpg was processed...

photo-1504198453319-5ce911bafcde.jpg was processed...

photo-1493976040374-85c8e12f0c0e.jpg was processed...

Finished in 2.651644399855286 seconds

我们可以看到,处理时间缩短为原来的1/5,大大提高了图片处理的速度。

相关推荐
Am心若依旧40917 分钟前
[c++11(二)]Lambda表达式和Function包装器及bind函数
开发语言·c++
明月看潮生20 分钟前
青少年编程与数学 02-004 Go语言Web编程 20课题、单元测试
开发语言·青少年编程·单元测试·编程与数学·goweb
大G哥29 分钟前
java提高正则处理效率
java·开发语言
ROBOT玲玉33 分钟前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy
VBA633739 分钟前
VBA技术资料MF243:利用第三方软件复制PDF数据到EXCEL
开发语言
轩辰~41 分钟前
网络协议入门
linux·服务器·开发语言·网络·arm开发·c++·网络协议
小_太_阳1 小时前
Scala_【1】概述
开发语言·后端·scala·intellij-idea
向宇it1 小时前
【从零开始入门unity游戏开发之——unity篇02】unity6基础入门——软件下载安装、Unity Hub配置、安装unity编辑器、许可证管理
开发语言·unity·c#·编辑器·游戏引擎
Kai HVZ1 小时前
python爬虫----爬取视频实战
爬虫·python·音视频
古希腊掌管学习的神1 小时前
[LeetCode-Python版]相向双指针——611. 有效三角形的个数
开发语言·python·leetcode