Python自学:使用多进程处理 multiprocessing

1. 使用多进程执行函数

以下代码没有使用多进程。

python 复制代码
import time

start = time.perf_counter()

def do_something():
    print('Sleeping 1 second...')
    time.sleep(1)
    print('Done Sleep...')

do_something()
do_something()

finish = time.perf_counter()

print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 1 second...

Done Sleep...

Sleeping 1 second...

Done Sleep...

Finished in 2.03 second(s)

以下代码使用了多进程。

python 复制代码
import time
import multiprocessing


def do_something():
    print('Sleeping 1 second...')
    time.sleep(1)
    print('Done Sleep...')


if __name__ == '__main__':

    start = time.perf_counter()

    p1 = multiprocessing.Process(target=do_something)
    p2 = multiprocessing.Process(target=do_something)

    p1.start()
    p2.start()

    p1.join()
    p2.join()

    finish = time.perf_counter()

    print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 1 second...

Sleeping 1 second...

Done Sleep...

Done Sleep...

Finished in 1.07 second(s)

2. 使用loop创建多个进程,并在函数中传入参数。

python 复制代码
import time
import multiprocessing


def do_something(seconds):
    print(f'Sleeping {seconds} second(s)...')
    time.sleep(seconds)
    print('Done Sleep...')


if __name__ == '__main__':

    start = time.perf_counter()

    processes = []

    for _ in range(10):
        p = multiprocessing.Process(target=do_something, args=[1.5])
        p.start()
        processes.append(p)

    for process in processes:
        process.join()

    finish = time.perf_counter()

    print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Sleeping 1.5 second(s)...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Done Sleep...

Finished in 1.62 second(s)

3. 使用进程池实现多进程

python 复制代码
import time
import concurrent.futures


def do_something(seconds):
    print(f'Sleeping {seconds} second(s)...')
    time.sleep(seconds)
    return f'Done Sleep...{seconds}'


if __name__ == '__main__':

    start = time.perf_counter()

    with concurrent.futures.ProcessPoolExecutor() as executor:
        secs = [5, 4, 3, 2, 1]
        results = executor.map(do_something, secs)

        for result in results:
            print(result)

    finish = time.perf_counter()

    print(f'Finished in {round(finish-start, 2)} second(s)')

输出为:

Sleeping 5 second(s)...

Sleeping 4 second(s)...

Sleeping 3 second(s)...

Sleeping 2 second(s)...

Sleeping 1 second(s)...

Done Sleep...5

Done Sleep...4

Done Sleep...3

Done Sleep...2

Done Sleep...1

Finished in 5.14 second(s)

4. 使用多进程处理图片

以下代码展示了没有使用多进程处理图片

python 复制代码
import time
from PIL import Image, ImageFilter

img_names = [
    'photo-1516117172878-fd2c41f4a759.jpg',
    'photo-1532009324734-20a7a5813719.jpg',
    'photo-1524429656589-6633a470097c.jpg',
    'photo-1530224264768-7ff8c1789d79.jpg',
    'photo-1564135624576-c5c88640f235.jpg',
    'photo-1541698444083-023c97d3f4b6.jpg',
    'photo-1522364723953-452d3431c267.jpg',
    'photo-1493976040374-85c8e12f0c0e.jpg',
    'photo-1504198453319-5ce911bafcde.jpg',
    'photo-1530122037265-a5f1f91d3b99.jpg',
    'photo-1516972810927-80185027ca84.jpg',
    'photo-1550439062-609e1531270e.jpg',
    'photo-1549692520-acc6669e2f0c.jpg'
]

t1 = time.perf_counter()

size = (1200, 1200)

for img_name in img_names:
    img = Image.open(img_name)

    img = img.filter(ImageFilter.GaussianBlur(15))

    img.thumbnail(size)

    img.save(f'processed/{img_name}')
    print(f'{img_name} was processed...')

t2 = time.perf_counter()

print(f'Finished in {t2-t1} seconds')

输出为:

photo-1516117172878-fd2c41f4a759.jpg was processed...

photo-1532009324734-20a7a5813719.jpg was processed...

photo-1524429656589-6633a470097c.jpg was processed...

photo-1530224264768-7ff8c1789d79.jpg was processed...

photo-1564135624576-c5c88640f235.jpg was processed...

photo-1541698444083-023c97d3f4b6.jpg was processed...

photo-1522364723953-452d3431c267.jpg was processed...

photo-1493976040374-85c8e12f0c0e.jpg was processed...

photo-1504198453319-5ce911bafcde.jpg was processed...

photo-1530122037265-a5f1f91d3b99.jpg was processed...

photo-1516972810927-80185027ca84.jpg was processed...

photo-1550439062-609e1531270e.jpg was processed...

photo-1549692520-acc6669e2f0c.jpg was processed...

Finished in 13.196055100299418 seconds

使用多进程的方式处理图片

python 复制代码
import time
import concurrent.futures
from PIL import Image, ImageFilter

img_names = [
    'photo-1516117172878-fd2c41f4a759.jpg',
    'photo-1532009324734-20a7a5813719.jpg',
    'photo-1524429656589-6633a470097c.jpg',
    'photo-1530224264768-7ff8c1789d79.jpg',
    'photo-1564135624576-c5c88640f235.jpg',
    'photo-1541698444083-023c97d3f4b6.jpg',
    'photo-1522364723953-452d3431c267.jpg',
    'photo-1493976040374-85c8e12f0c0e.jpg',
    'photo-1504198453319-5ce911bafcde.jpg',
    'photo-1530122037265-a5f1f91d3b99.jpg',
    'photo-1516972810927-80185027ca84.jpg',
    'photo-1550439062-609e1531270e.jpg',
    'photo-1549692520-acc6669e2f0c.jpg'
]


def process_image(img_name):
    
    img = Image.open(img_name)

    img = img.filter(ImageFilter.GaussianBlur(15))

    img.thumbnail((1200, 1200))

    img.save(f'processed/{img_name}')
    print(f'{img_name} was processed...')

if __name__ == '__main__':
    t1 = time.perf_counter()

    with concurrent.futures.ProcessPoolExecutor() as executor:
        executor.map(process_image, img_names)

    t2 = time.perf_counter()

    print(f'Finished in {t2-t1} seconds')

输出为:

photo-1516117172878-fd2c41f4a759.jpg was processed...

photo-1516972810927-80185027ca84.jpg was processed...

photo-1524429656589-6633a470097c.jpg was processed...

photo-1522364723953-452d3431c267.jpg was processed...

photo-1532009324734-20a7a5813719.jpg was processed...

photo-1530122037265-a5f1f91d3b99.jpg was processed...

photo-1530224264768-7ff8c1789d79.jpg was processed...

photo-1564135624576-c5c88640f235.jpg was processed...

photo-1550439062-609e1531270e.jpg was processed...

photo-1541698444083-023c97d3f4b6.jpg was processed...

photo-1549692520-acc6669e2f0c.jpg was processed...

photo-1504198453319-5ce911bafcde.jpg was processed...

photo-1493976040374-85c8e12f0c0e.jpg was processed...

Finished in 2.651644399855286 seconds

我们可以看到,处理时间缩短为原来的1/5,大大提高了图片处理的速度。

相关推荐
万邦科技Lafite3 小时前
京东按图搜索京东商品(拍立淘) API (.jd.item_search_img)快速抓取数据
开发语言·前端·数据库·python·电商开放平台·京东开放平台
丁浩6664 小时前
Python机器学习---6.集成学习与随机森林
python·随机森林·机器学习
charlie1145141915 小时前
现代 Python 学习笔记:Statements & Syntax
笔记·python·学习·教程·基础·现代python·python3.13
Never_Satisfied5 小时前
在JavaScript / Node.js / 抖音小游戏中,使用tt.request通信
开发语言·javascript·node.js
爱吃小胖橘5 小时前
Unity资源加载模块全解析
开发语言·unity·c#·游戏引擎
千里镜宵烛7 小时前
Lua-迭代器
开发语言·junit·lua
渡我白衣7 小时前
C++ 同名全局变量:当符号在链接器中“相遇”
开发语言·c++·人工智能·深度学习·microsoft·语言模型·人机交互
淮北4947 小时前
html + css +js
开发语言·前端·javascript·css·html
麦麦大数据7 小时前
F036 vue+flask中医热性药知识图谱可视化系统vue+flask+echarts+mysql
vue.js·python·mysql·flask·可视化·中医中药