初次安装Pytorch过程

第一次安装Pytorch,刚开始安装的时候装错了CUDA的版本号

这里最高支持12.2.138, 但是我装了一个12.2.140的CUDA,导致不兼容我在测试时发现

cpp 复制代码
import torch

# if torch.cuda.is_available():
#     print("GPU可用")
# else:
#     print("GPU不可用")


# current_device = torch.cuda.current_device()
# device_name = torch.cuda.get_device_name(current_device)
# print(f"当前GPU设备索引: {current_device}")
# print(f"当前GPU设备名称: {device_name}")

print("PyTorch版本:", torch.__version__)
print(torch.cuda.is_available())

# print("PyTorch版本:", torch.__version__)

# # 创建一个简单的张量
# x = torch.tensor([1.0, 2.0, 3.0])
# print("张量x:", x)

输出是False(GPU不可用),后来检查中发现是CUDA版本不兼容,所以我又把之前的pytorch全部卸载了,又重新装的低版本的CUDA,然后再装pytorch,最后成功了,显示True(GPU可用),写这篇博客的意义在于记录一下安装Pytorch的过程,避免以后遗忘。

过程:

1.首先在命令行窗口中,输入

csharp 复制代码
python --version

查看自己的python版本

2.

安装PyTorch通常涉及选择正确的PyTorch版本以及安装适合您的操作系统和硬件配置的PyTorch版本。以下是在常见操作系统上安装PyTorch的一般步骤:

注意:PyTorch的安装方式和要求可能会随时间和版本的变化而有所不同。确保在安装之前查看PyTorch官方网站以获取最新的安装说明和要求。

使用pip安装PyTorch(CPU版本)

如果您只想在CPU上使用PyTorch,可以使用pip来安装它。以下是一般步骤:

1.打开命令行或终端窗口。

2.在终端中输入以下命令:

cpp 复制代码
pip install torch

这将安装最新版本的PyTorch(CPU版本)。

使用conda安装PyTorch(CPU版本)

如果您使用Anaconda或Miniconda作为Python环境管理器,可以使用conda来安装PyTorch。以下是一般步骤:

1.打开命令行或终端窗口。

2.创建一个新的conda环境(可选,但推荐):

cpp 复制代码
conda create -n myenv python=3.8  # 创建一个名为myenv的Python 3.8环境
conda activate myenv  # 激活新环境

3.安装PyTorch(CPU版本):

cpp 复制代码
conda install pytorch torchvision torchaudio cpuonly -c pytorch

使用pip安装PyTorch(GPU版本)

如果您要在支持CUDA的GPU上使用PyTorch,可以使用pip来安装PyTorch GPU版本。首先,确保您的系统上已经安装了NVIDIA驱动和CUDA工具包。

1.打开命令行或终端窗口。

2.在终端中输入以下命令:

cpp 复制代码
pip install torch torchvision torchaudio

这将安装最新版本的PyTorch(GPU版本),如果您的GPU和CUDA版本与PyTorch兼容的话。

使用conda安装PyTorch(GPU版本)

如果您使用Anaconda或Miniconda,并且要在支持CUDA的GPU上使用PyTorch,可以使用conda来安装PyTorch。同样,请确保您的系统上已经安装了NVIDIA驱动和CUDA工具包。

1.打开命令行或终端窗口。

2.创建一个新的conda环境(可选,但推荐):

cpp 复制代码
conda create -n myenv python=3.8  # 创建一个名为myenv的Python 3.8环境
conda activate myenv  # 激活新环境

3.安装PyTorch(GPU版本):

cpp 复制代码
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia

请注意,上述命令中的cudatoolkit版本应与您的CUDA版本匹配。您可以使用nvcc --version命令来查看您的CUDA版本。

安装完成后,您可以在Python环境中导入PyTorch并开始使用它。记得查看官方文档以获取更多信息和示例代码。


以上是安装Pytorch的过程,但是在此之前我们需要先安装CUDA,具体操作可以参考👉安装CUDA这篇文章。
CUDA下载网站

进去之后点这里

下载旧版本的CUDA(一般不要下载最新版,因为会有版本不兼容的问题)

这里我下的是11.8.0

后续的步骤就可以参考👉安装CUDA这篇文章。

ps:当前最新的cudatoolkit为11.8.0,查询网站👉cudatoolkit

下完CUDA后就需要下载Pytorch了,下载网站👉Pytorch下载网站

切记:下载pytorch的版本要参考着CUDA来下载,否则会导致二者不兼容。

下面是我下载pytorch的配置:

因为我的CUDA就是11.8.0的,所以我选择了CUDA 11.8这个选项。

之后复制他的command,去vscode的虚拟环境里下载(命令行窗口应该可以,但是一定也要开启虚拟环境),具体开启虚拟环境的步骤

cpp 复制代码
conda activate myenv	(激活虚拟环境)
conda init powershell	(初始化powershell环境)

一般只需要运行第一行的代码即可开启虚拟环境

开启虚拟环境后前方会出现(myenv)的字样

例如:

这就代表着已经成功开启虚拟环境了,然后再在虚拟环境里用刚才复制的command代码来下载Pytorch,例如:

然后耐心等待下载完成即可。

要检查是否成功安装了PyTorch,您可以打开Python解释器(在命令行或终端中运行python命令)并尝试导入PyTorch。如果没有出现导入错误,那么您已成功安装PyTorch。

以下是一些示例代码,演示如何检查PyTorch的安装:

python 复制代码
import torch

# 检查PyTorch版本
print("PyTorch版本:", torch.__version__)

# 创建一个简单的张量
x = torch.tensor([1.0, 2.0, 3.0])
print("张量x:", x)

如果您在运行这些代码时没有看到任何错误,并且能够成功导入PyTorch并创建张量,那么您的PyTorch安装就是成功的。

另外,您还可以运行以下命令来检查PyTorch是否已安装以及其版本:

cpp 复制代码
python -c "import torch; print(torch.__version__)"

这将在命令行中输出PyTorch的版本号。如果成功显示版本号而没有导入错误,那么PyTorch已经成功安装并可用。

如果您在安装或导入PyTorch时遇到任何错误,可能需要检查安装过程中是否出现问题或根据错误消息解决问题。确保遵循官方文档和安装说明以确保正确的安装。

还可以通过运行代码

python 复制代码
import torch

# if torch.cuda.is_available():
#     print("GPU可用")
# else:
#     print("GPU不可用")


current_device = torch.cuda.current_device()
device_name = torch.cuda.get_device_name(current_device)
print(f"当前GPU设备索引: {current_device}")
print(f"当前GPU设备名称: {device_name}")

print("PyTorch版本:", torch.__version__)
print(torch.cuda.is_available())

# print("PyTorch版本:", torch.__version__)

# # 创建一个简单的张量
# x = torch.tensor([1.0, 2.0, 3.0])
# print("张量x:", x)

来判断CUDA是否可以正常使用,如果输出

则代表你已经成功安装Pytorch和与之相匹配的CUDA了!

最后贴几个对我帮助很大的博客以及网站:
超详细GPU部署 (pytorch+tensorflow)博客
安装CUDA博客
pytorch 下载安装全流程详细教程
超链接下载地址(没用到)
CUDA 11.8.0下载地址
Pytorch下载地址

检查当前已安装的CUDA版本

查看电脑可以安装的CUDA最高版本,即你所安装的CUDA只能≤12.2.138(每人情况不同)

相关推荐
岑梓铭21 分钟前
(CentOs系统虚拟机)Standalone模式下安装部署“基于Python编写”的Spark框架
linux·python·spark·centos
游客52035 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
Eric.Lee202138 分钟前
moviepy将图片序列制作成视频并加载字幕 - python 实现
开发语言·python·音视频·moviepy·字幕视频合成·图像制作为视频
Dontla43 分钟前
vscode怎么设置anaconda python解释器(anaconda解释器、vscode解释器)
ide·vscode·python
qq_529025291 小时前
Torch.gather
python·深度学习·机器学习
数据小爬虫@1 小时前
如何高效利用Python爬虫按关键字搜索苏宁商品
开发语言·爬虫·python
Cachel wood2 小时前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架
終不似少年遊*2 小时前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
Python之栈2 小时前
【无标题】
数据库·python·mysql
袁袁袁袁满2 小时前
100天精通Python(爬虫篇)——第113天:‌爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python·网络爬虫·爬虫实战·urllib·urllib模块教程