机器学习——boosting之XGBoost(未完)

划水一整天,模型看了仨!不错,虽然现在在打哈欠,还是很想把XGBoost梳理梳理

先从名字开始

XGBoost,eXtreme Gradient Boosting: em。。。。不理解

书上说,XGBoost有很好的性能,在各大比赛中大放异彩,行吧,冲这句,好好看看!

看了几篇,总感觉这个XGBoost不仅仅是对GBDT的改进版,还包含了对CART决策树的改进

  1. 首先,GBDT是经过泰勒一阶导出来的,XGBoost则是经过泰勒二阶导,越高阶导越接近原函数值
    L ( y , f ( x ) ) = L m − 1 ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f ( x ) − f m − 1 ( x ) ] + 1 2 ∗ ə L ( y , f m − 1 ( x ) ) 2 ə f m − 1 ( x ) 2 ∗ ( f ( x ) − f m − 1 ( x ) ) 2 L(y,f(x)) = L_{m-1}(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f(x)-f_{m-1}(x)]+\frac{1}{2}*\frac{ə^2_{L(y,f_{m-1}(x))}}{ə^2_{f_{m-1}(x)}}*(f(x)-f_{m-1}(x))^2 L(y,f(x))=Lm−1(y,fm−1(x))+əfm−1(x)əL(y,fm−1(x))∗[f(x)−fm−1(x)]+21∗əfm−1(x)2əL(y,fm−1(x))2∗(f(x)−fm−1(x))2

令 g i = ə L ( y i , f m − 1 ( x i ) ) ə f m − 1 ( x i ) g_i = \frac{ə_{L(y_i,f_{m-1}(x_i))}}{ə_{f_{m-1}(x_i)}} gi=əfm−1(xi)əL(yi,fm−1(xi)), h i = ə L ( y , f m − 1 ( x i ) ) 2 ə f m − 1 ( x i ) 2 h_i = \frac{ə^2_{L(y,f_{m-1}(x_i))}}{ə^2_{f_{m-1}(x_i)}} hi=əfm−1(xi)2əL(y,fm−1(xi))2, L ( y , f m − 1 ( x ) ) L(y,f_{m-1}(x)) L(y,fm−1(x))这仨都是前k-1轮的,相当于常数

令 f ( x ) = f m ( x ) f(x)=f_m(x) f(x)=fm(x),则有 T m = f m ( x ) − f m − 1 ( x ) T_m = f_m(x)-f_{m-1}(x) Tm=fm(x)−fm−1(x)

则 L k ( y , f m ( x ) ) = L m − 1 ( y , f m − 1 ( x ) ) + g i ∗ T m ( x i , θ m ) + 1 2 h i ∗ T m 2 ( x i , θ m ) L_k(y,f_m(x)) = L_{m-1}(y,f_{m-1}(x))+g_i*T_m(x_i,θ_m)+\frac{1}{2}h_i*T^2_m(x_i,θ_m) Lk(y,fm(x))=Lm−1(y,fm−1(x))+gi∗Tm(xi,θm)+21hi∗Tm2(xi,θm)

  1. 其次,XGBoost的优化①:增加正则化项 Ω ( T m ( x ) ) Ω(T_m(x)) Ω(Tm(x))

晕了...明天再说!

相关推荐
IT·小灰灰15 小时前
30行PHP,利用硅基流动API,网页客服瞬间上线
开发语言·人工智能·aigc·php
新缸中之脑15 小时前
编码代理的未来
人工智能
Anarkh_Lee15 小时前
【小白也能实现智能问数智能体】使用开源的universal-db-mcp在coze中实现问数 AskDB智能体
数据库·人工智能·ai·开源·ai编程
John_ToDebug15 小时前
2026年展望:在技术涌现时代构筑确定性
人工智能·程序人生
AndyHeee15 小时前
【windows使用TensorFlow,GPU无法识别问题汇总,含TensorFlow完整安装过程】
人工智能·windows·tensorflow
jay神16 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
交通上的硅基思维16 小时前
人工智能安全:风险、机制与治理框架研究
人工智能·安全·百度
老百姓懂点AI16 小时前
[测试工程] 告别“玄学”评测:智能体来了(西南总部)基于AI agent指挥官的自动化Eval框架与AI调度官的回归测试
运维·人工智能·自动化
2501_9481201516 小时前
基于量化感知训练的大语言模型压缩方法
人工智能·语言模型·自然语言处理
songyuc16 小时前
【Llava】load_pretrained_model() 说明
人工智能·深度学习