Flink基础

Flink
architecture

job manager is master

task managers are workers

task slot is a unit of resource in cluster, number of slot is equal to number of cores(超线程则slot=2*cores), slot=一组内存+一些线程+共享CPU

when starting a cluster,job manager will allocate a certaion number of slots to each taskManager in cluster,

each slots can run one parallel instance of a task or operator
tasks as a basic unit of work execution physically

each task corresponds to a logical reperesentation of data processiong (entire job chain excution )

a subtask represents some operators physically. which is concrete and excutable with other subtasks run in paralle in the same task slot,Flink will process the excution by chaining compatible oeprators if can be chained in same slot to reduce data shuffling
Subtask 是 Flink 作业中 Operator 的并行实例。每个 Operator 都可以拥有一个或多个 subtask,这些 subtask 是并行执行的,运算符子任务(subtask)的数量是该特定运算符的并行度

subtask scheduling

if parallelism is 6, six parallel instances will go across the available task slots.

Flink will process the excution by chaining compatible oeprators if can be chained in same slot to reduce data shuffling

if key by,then all data with same key will be processed in the same slot for accurate state management

**key by group by or window operation need data shuffling(**data movement between nodes)

operator会被chain在同一subtask的情况

(1)手动设置setChainingStrategy(ChainingStrategy.ALWAYS)

.map(x => x * 2)

.filter(x => x > 2)

.setChainingStrategy(ChainingStrategy.ALWAYS)

(2)keyby分区后,相同数据的后续所有操作都在同一个subtask中

keyBy(keySelector).map(...).filter(...) .print();

(3)并行度相同的operators通常可能被chain在一起减少data shuffling

flink Window窗口

在一个无界流中设置起始位置和终止位置,让无界流变成有界流,并且在有界流中进行数据处理,流批转化

  • window窗口在无界流中设置起始位置和终止位置的方式可以有两种 ,基于时间或者基于窗口数据量,
  • 分组和未分组窗口。自定义窗口
  • 时间窗口:
  • 滚动窗口: 数据不重复
  • 滑动窗口:数据有重复
  • 窗口聚合函数:
  • 增量聚合:ReduceFunction、AggregateFunction
  • 全量聚合 ProcessWindowFunction、WindowFunction属于全量窗口函数
相关推荐
老蒋新思维8 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
EveryPossible9 小时前
优先级调整练习1
大数据·学习
B站计算机毕业设计之家10 小时前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游
Jackeyzhe11 小时前
Flink学习笔记:如何做容错
flink
亿坊电商12 小时前
无人共享茶室智慧化破局:24H智能接单系统的架构实践与运营全景!
大数据·人工智能·架构
老蒋新思维12 小时前
创客匠人峰会新解:AI 时代知识变现的 “信任分层” 法则 —— 从流量到高客单的进阶密码
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
Jerry.张蒙13 小时前
SAP业财一体化实现的“隐形桥梁”-价值串
大数据·数据库·人工智能·学习·区块链·aigc·运维开发
一勺-_-13 小时前
.git文件夹
大数据·git·elasticsearch
秋刀鱼 ..15 小时前
2026年电力电子与电能变换国际学术会议 (ICPEPC 2026)
大数据·python·计算机网络·数学建模·制造
G皮T16 小时前
【Elasticsearch】 大慢查询隔离(一):最佳实践
大数据·elasticsearch·搜索引擎·性能调优·索引·性能·查询