Flink基础

Flink
architecture

job manager is master

task managers are workers

task slot is a unit of resource in cluster, number of slot is equal to number of cores(超线程则slot=2*cores), slot=一组内存+一些线程+共享CPU

when starting a cluster,job manager will allocate a certaion number of slots to each taskManager in cluster,

each slots can run one parallel instance of a task or operator
tasks as a basic unit of work execution physically

each task corresponds to a logical reperesentation of data processiong (entire job chain excution )

a subtask represents some operators physically. which is concrete and excutable with other subtasks run in paralle in the same task slot,Flink will process the excution by chaining compatible oeprators if can be chained in same slot to reduce data shuffling
Subtask 是 Flink 作业中 Operator 的并行实例。每个 Operator 都可以拥有一个或多个 subtask,这些 subtask 是并行执行的,运算符子任务(subtask)的数量是该特定运算符的并行度

subtask scheduling

if parallelism is 6, six parallel instances will go across the available task slots.

Flink will process the excution by chaining compatible oeprators if can be chained in same slot to reduce data shuffling

if key by,then all data with same key will be processed in the same slot for accurate state management

**key by group by or window operation need data shuffling(**data movement between nodes)

operator会被chain在同一subtask的情况

(1)手动设置setChainingStrategy(ChainingStrategy.ALWAYS)

.map(x => x * 2)

.filter(x => x > 2)

.setChainingStrategy(ChainingStrategy.ALWAYS)

(2)keyby分区后,相同数据的后续所有操作都在同一个subtask中

keyBy(keySelector).map(...).filter(...) .print();

(3)并行度相同的operators通常可能被chain在一起减少data shuffling

flink Window窗口

在一个无界流中设置起始位置和终止位置,让无界流变成有界流,并且在有界流中进行数据处理,流批转化

  • window窗口在无界流中设置起始位置和终止位置的方式可以有两种 ,基于时间或者基于窗口数据量,
  • 分组和未分组窗口。自定义窗口
  • 时间窗口:
  • 滚动窗口: 数据不重复
  • 滑动窗口:数据有重复
  • 窗口聚合函数:
  • 增量聚合:ReduceFunction、AggregateFunction
  • 全量聚合 ProcessWindowFunction、WindowFunction属于全量窗口函数
相关推荐
阿里云大数据AI技术13 小时前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx35217 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康21 小时前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工2 天前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5