Faster Rcnn

一、公用特征Feature Maps的获取

二、Region Proposal Network

Feature Maps[bs,1024,38,38]经过3*3卷积,然后分别经过两个1*1的卷积,通道数分别为18,36

18 = 9*2 代表每个位置9个先验框为背景和目标的概率

36 = 9*4 代表每个位置9个先验框的坐标调整参数(Faster Rcnn也是有先验框的)

先验框 + 位置调整参数 = 建议框

建议框的初筛

由于建议框非常多,要对建议框进行初筛,先根据建议框是目标的分数,选出得分最高的前K个建议框,再进行NMS,然后再选出得分最高的前K个建议框。如一张照片有300个建议框。

三、ROI Pooling

根据建议框的参数,在Feature Map上裁剪出对应特征,比如[1024,82,79],每个特征的大小是不一样的,

相关推荐
西柚小萌新2 分钟前
【深度学习:进阶篇】--2.4.BN与神经网络调优
人工智能·深度学习·神经网络
金融小师妹5 分钟前
解码美元-黄金负相关:LSTM-Attention因果发现与黄金反弹推演
大数据·人工智能·算法
DZSpace8 分钟前
AI Agent 核心策略解析:Function Calling 与 ReAct 的设计哲学与应用实践
人工智能·大模型
小郑00112 分钟前
智能体还能配置MCP?智灵助理:打造智能交互新时代的全能助手
人工智能
AI大模型技术社16 分钟前
神经网络学习路线图:从感知机到Transformer的认知跃迁
人工智能
黄卷青灯7727 分钟前
把下载的ippicv.tgz放入<opencv_build_dir>/3rdparty/ippicv/download/中cmake依然无法识别
人工智能·opencv·计算机视觉·ippicv
程序员老刘41 分钟前
MCP:新时代的API,每个程序员都应该掌握
人工智能·flutter·mcp
Humbunklung1 小时前
全连接层和卷积层
人工智能·python·深度学习·神经网络·机器学习·cnn
广州山泉婚姻1 小时前
解锁高效开发:Spring Boot 3和MyBatis-Flex在智慧零工平台后端的应用实战
人工智能·spring boot·spring
三花AI1 小时前
Higgsfield AI 整合 Flux.1 Kontext:一站式创意工作流解决方案
人工智能