线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念(草稿)

目录

[1 什么是特征值和特征向量?](#1 什么是特征值和特征向量?)

[1.1 特征值和特征向量这2个概念先放后](#1.1 特征值和特征向量这2个概念先放后)

[1.2 直观定义](#1.2 直观定义)

[1.3 严格定义](#1.3 严格定义)

[2 如何求特征值和特征向量](#2 如何求特征值和特征向量)

[2.1 方法1:结合图形看,直观方法求](#2.1 方法1:结合图形看,直观方法求)

[2.1.1 单位矩阵的特征值和特征向量](#2.1.1 单位矩阵的特征值和特征向量)

[2.1.2 旋转矩阵](#2.1.2 旋转矩阵)

[2.2 根据严格定义的公式 A*X=λ*X 来求](#2.2 根据严格定义的公式 AX=λX 来求)

[2.3 特征方程](#2.3 特征方程)

[2.4 互异特征值对应的特征向量之间是线性无关的](#2.4 互异特征值对应的特征向量之间是线性无关的)

[3 对角化,普通矩阵对角化为对角矩阵](#3 对角化,普通矩阵对角化为对角矩阵)


2

特征值,放大伸缩倍数

特征向量,旋转角度

3.3 特征值和特征向量是什么?

直接说现在:特征向量这个块往哪个方向进行了拉伸,各个方向拉伸了几倍。这也让人很容易理解为什么,行列式的值就是特征值的乘积。

特征向量也代表了一些良好的性质,即这些线在线性变换后没有发生方向的偏移(可以逆转)只是长度发生了改变。

1 什么是特征值和特征向量?

1.1 特征值和特征向量这2个概念先放后

特征值和特征向量这2个概念先放后

先搞清楚,为什么会有特征值和特征向量

1.2 直观定义

因为有的向量,经过线性组合(线性映射)后其还是共线(方向不变/或刚好相反),这时

这些没有发生变换的向量称为特征向量

变换前后的伸缩比例叫做特征值

配图

1.3 严格定义

假设A是n阶方阵,X为非零向量,如果存在λ 使得如下等式成立

A*X=λ*X

那么λ就是A的特征值,非零向量x是A的特征向量

2 如何求特征值和特征向量

2.1 方法1:结合图形看,直观方法求

2.1.1 单位矩阵的特征值和特征向量

I*X=X

因此单位矩阵特征值是1,特征向量是向量空间内的任意向量

2.1.2 旋转矩阵

\\left\[ \\begin{matrix} cos(θ) \& -sin(θ) \\\\ sin(θ) \& cos(θ) \\\\ \\end{matrix} \\right\]

旋转矩阵需要根据,具体的转动角度θ来确定

注意θ用弧度值不要用角度值

比如θ=Π/2 不共线

θ=Π 还是共线,但是方向改变了,特征值-1 ,特征向量是所有向量?

因为任意向量来和旋转矩阵,都是刚好旋转这个弧度值

2.2 根据严格定义的公式 A*X=λ*X 来求

A*X=λ*X

A*X-λ*X=0

(A*-λ)*X=0

(A*-λ*I)*X=0

如果|A*-λ*I|≠0,那么(A*-λ*I)*X=0 只能是x=0,而x不能是零向量,因此|A*-λ*I|=0

联立方程组求解

|A*-λ*I|=0

(A*-λ*I)*X=0

|A*-λ*I|=0 → |1-λ,1 ;1 ,1-λ |=0 → (1-λ)^2-1=0

λ=0

λ=2

根据这个带入方程去求特征向量

2.3 特征方程

2.4 互异特征值对应的特征向量之间是线性无关的

3 对角化,普通矩阵对角化为对角矩阵

逆天 对角矩阵=[λ1,0 ; 0,λ2]

AP=P*Λ

APP-=P*Λ*P-

A=P*Λ* P-

如果P是正交矩阵,那么P-=Pt 而Pt 很好求

则A=P*Λ* Pt

相关推荐
sda423423424237 小时前
9.【线性代数】—— 线性相关性, 向量空间的基,维数
线性代数
神舟之光1 天前
动手学深度学习2025.2.23-预备知识之-线性代数
人工智能·深度学习·线性代数
余~~185381628002 天前
矩阵碰一碰发视频的后端源码技术,支持OEM
线性代数·矩阵·音视频
和光同尘@3 天前
74. 搜索二维矩阵(LeetCode 热题 100)
数据结构·c++·线性代数·算法·leetcode·职场和发展·矩阵
跨境卫士小树3 天前
店铺矩阵崩塌前夜:跨境多账号运营的3个生死线
大数据·线性代数·矩阵
亲持红叶4 天前
最优化方法-牛顿法
人工智能·线性代数·机器学习·概率论
sda423423424235 天前
8.【线性代数】——求解Ax=b
线性代数·ax=b
余~~185381628005 天前
短视频矩阵碰一碰发视频源码技术开发,支持OEM
网络·人工智能·线性代数·矩阵·音视频
运筹说6 天前
运筹说 第132期 | 矩阵对策的基本理论
线性代数·矩阵·运筹学
sda423423424236 天前
6.【线性代数】—— 列空间和零空间
线性代数·列空间·零空间