线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念(草稿)

目录

[1 什么是特征值和特征向量?](#1 什么是特征值和特征向量?)

[1.1 特征值和特征向量这2个概念先放后](#1.1 特征值和特征向量这2个概念先放后)

[1.2 直观定义](#1.2 直观定义)

[1.3 严格定义](#1.3 严格定义)

[2 如何求特征值和特征向量](#2 如何求特征值和特征向量)

[2.1 方法1:结合图形看,直观方法求](#2.1 方法1:结合图形看,直观方法求)

[2.1.1 单位矩阵的特征值和特征向量](#2.1.1 单位矩阵的特征值和特征向量)

[2.1.2 旋转矩阵](#2.1.2 旋转矩阵)

[2.2 根据严格定义的公式 A*X=λ*X 来求](#2.2 根据严格定义的公式 AX=λX 来求)

[2.3 特征方程](#2.3 特征方程)

[2.4 互异特征值对应的特征向量之间是线性无关的](#2.4 互异特征值对应的特征向量之间是线性无关的)

[3 对角化,普通矩阵对角化为对角矩阵](#3 对角化,普通矩阵对角化为对角矩阵)


2

特征值,放大伸缩倍数

特征向量,旋转角度

3.3 特征值和特征向量是什么?

直接说现在:特征向量这个块往哪个方向进行了拉伸,各个方向拉伸了几倍。这也让人很容易理解为什么,行列式的值就是特征值的乘积。

特征向量也代表了一些良好的性质,即这些线在线性变换后没有发生方向的偏移(可以逆转)只是长度发生了改变。

1 什么是特征值和特征向量?

1.1 特征值和特征向量这2个概念先放后

特征值和特征向量这2个概念先放后

先搞清楚,为什么会有特征值和特征向量

1.2 直观定义

因为有的向量,经过线性组合(线性映射)后其还是共线(方向不变/或刚好相反),这时

这些没有发生变换的向量称为特征向量

变换前后的伸缩比例叫做特征值

配图

1.3 严格定义

假设A是n阶方阵,X为非零向量,如果存在λ 使得如下等式成立

A*X=λ*X

那么λ就是A的特征值,非零向量x是A的特征向量

2 如何求特征值和特征向量

2.1 方法1:结合图形看,直观方法求

2.1.1 单位矩阵的特征值和特征向量

I*X=X

因此单位矩阵特征值是1,特征向量是向量空间内的任意向量

2.1.2 旋转矩阵

\\left\[ \\begin{matrix} cos(θ) \& -sin(θ) \\\\ sin(θ) \& cos(θ) \\\\ \\end{matrix} \\right\]

旋转矩阵需要根据,具体的转动角度θ来确定

注意θ用弧度值不要用角度值

比如θ=Π/2 不共线

θ=Π 还是共线,但是方向改变了,特征值-1 ,特征向量是所有向量?

因为任意向量来和旋转矩阵,都是刚好旋转这个弧度值

2.2 根据严格定义的公式 A*X=λ*X 来求

A*X=λ*X

A*X-λ*X=0

(A*-λ)*X=0

(A*-λ*I)*X=0

如果|A*-λ*I|≠0,那么(A*-λ*I)*X=0 只能是x=0,而x不能是零向量,因此|A*-λ*I|=0

联立方程组求解

|A*-λ*I|=0

(A*-λ*I)*X=0

|A*-λ*I|=0 → |1-λ,1 ;1 ,1-λ |=0 → (1-λ)^2-1=0

λ=0

λ=2

根据这个带入方程去求特征向量

2.3 特征方程

2.4 互异特征值对应的特征向量之间是线性无关的

3 对角化,普通矩阵对角化为对角矩阵

逆天 对角矩阵=[λ1,0 ; 0,λ2]

AP=P*Λ

APP-=P*Λ*P-

A=P*Λ* P-

如果P是正交矩阵,那么P-=Pt 而Pt 很好求

则A=P*Λ* Pt

相关推荐
一碗姜汤15 小时前
LS性能边界、QR分解、RLS自适应
线性代数·机器学习
CreasyChan17 小时前
数学基础-矩阵与变换
线性代数·矩阵
com_4sapi17 小时前
2026年矩阵系统三家优质服务商可靠支撑
线性代数·矩阵
会编程是什么感觉...19 小时前
算法 - FOC
线性代数·算法·矩阵·无刷电机
Leweslyh2 天前
线性时不变系统传递函数矩阵的状态空间实现理论及其多重性机理研究
线性代数·矩阵
曹文杰15190301122 天前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
闻缺陷则喜何志丹4 天前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
点云侠4 天前
粒子群优化算法求解三维变换矩阵的数学推导
线性代数·算法·矩阵
AI科技星5 天前
圆柱螺旋运动方程的一步步求导与实验数据验证
开发语言·数据结构·经验分享·线性代数·算法·数学建模
劈星斩月5 天前
线性代数-3Blue1Brown《线性代数的本质》逆矩阵、列空间、秩与零空间(8)
线性代数·逆矩阵·列空间·秩与零空间